%I #29 Apr 20 2015 17:03:58
%S 1,3,13,57,257,1185,5573,26661,129437,636429,3163725,15877101,
%T 80340813,409495053,2100558429,10836262173,56184433661,292628726205,
%U 1530338756093,8032671187581,42304703640701,223484135199357,1183921500416509,6288098247289341
%N Expansion of g.f.: (1-4*z-sqrt(1-8*z+12*z^2+8*z^3-4*z^4))/(2*z^2(1-z)).
%C Number of lattice paths, never going below the x-axis, from (0,0) to (n,0) consisting of up steps U = (1,1), down steps D = (1,-1) and 3-colored horizontal steps H(k) = (k,0) for every positive integer k.
%H R. De Castro, A. L. Ramírez and J. L. Ramírez, <a href="http://dx.doi.org/10.7561/SACS.2014.1.137">Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs</a>, Scientific Annals of Computer Science, 24(1)(2014), 137-171.
%F a(s) = Sum_{n=0..s} (Sum_{m=0..s-2n} (C(n)binomial(m+2n,m)*binomial(s-2n-1,m-1)3^m)), where C(n)=A000108(n).
%F G.f.: (1-4z-sqrt(1-8z+12z^2+8z^3-4z^4))/(2z^2(1-z)).
%F a(n) ~ sqrt(77 + 29*sqrt(7)) * (3+sqrt(7))^n / (sqrt(3*Pi) * n^(3/2)). - _Vaclav Kotesovec_, Apr 20 2015
%F Recurrence: (n+2)*a(n) = 3*(3*n+2)*a(n-1) - 4*(5*n-2)*a(n-2) + 4*(n+2)*a(n-3) + 12*(n-3)*a(n-4) - 4*(n-4)*a(n-5). - _Vaclav Kotesovec_, Apr 20 2015
%t CoefficientList[Series[(1-4*x-Sqrt[1-8*x+12*x^2+8*x^3-4*x^4])/(2*x^2*(1-x)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Apr 20 2015 *)
%Y Cf. A135052.
%K nonn
%O 0,2
%A _José Luis Ramírez Ramírez_, Apr 19 2015