login
A256861
a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n^2 - n + 6)/720.
1
1, 8, 42, 168, 546, 1512, 3696, 8184, 16731, 32032, 58058, 100464, 167076, 268464, 418608, 635664, 942837, 1369368, 1951642, 2734424, 3772230, 5130840, 6888960, 9140040, 11994255, 15580656, 20049498, 25574752, 32356808, 40625376, 50642592, 62706336
OFFSET
1,2
COMMENTS
This is the case k = n of b(n,k) = n*(n+1)*(n+2)*(n+3)*(n+4)*(k*(n-1)+6)/120, where b(n,k) is the n-th hypersolid number in 6 dimensions generated from an arithmetical progression with the first term 1 and common difference k (see Sardelis et al. paper).
LINKS
D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070 [math.GM], 2008.
FORMULA
G.f.: x*(1 + 6*x^2)/(1 - x)^8.
a(n) = 6*A000580(n+4) + A000580(n+6). [Bruno Berselli, Apr 15 2015]
MATHEMATICA
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (6 - n + n^2)/720, {n, 40}]
Table[Times@@(n+Range[0, 4])(n^2-n+6)/720, {n, 40}] (* or *) LinearRecurrence[ {8, -28, 56, -70, 56, -28, 8, -1}, {1, 8, 42, 168, 546, 1512, 3696, 8184}, 40] (* Harvey P. Dale, Sep 25 2019 *)
PROG
(PARI) vector(40, n, n*(n+1)*(n+2)*(n+3)*(n+4)*(n^2-n+6)/720) \\ Bruno Berselli, Apr 15 2015
CROSSREFS
Cf. A000580.
Cf. similar sequences listed in A256859.
Sequence in context: A231069 A319235 A341764 * A287221 A119965 A229729
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Apr 14 2015
STATUS
approved