login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256861 a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n^2 - n + 6)/720. 1
1, 8, 42, 168, 546, 1512, 3696, 8184, 16731, 32032, 58058, 100464, 167076, 268464, 418608, 635664, 942837, 1369368, 1951642, 2734424, 3772230, 5130840, 6888960, 9140040, 11994255, 15580656, 20049498, 25574752, 32356808, 40625376, 50642592, 62706336 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is the case k = n of b(n,k) = n*(n+1)*(n+2)*(n+3)*(n+4)*(k*(n-1)+6)/120, where b(n,k) is the n-th hypersolid number in 6 dimensions generated from an arithmetical progression with the first term 1 and common difference k (see Sardelis et al. paper).

LINKS

Table of n, a(n) for n=1..32.

D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070 [math.GM], 2008.

Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).

FORMULA

G.f.: x*(1 + 6*x^2)/(1 - x)^8.

a(n) = 6*A000580(n+4) + A000580(n+6). [Bruno Berselli, Apr 15 2015]

MATHEMATICA

Table[n (1 + n) (2 + n) (3 + n) (4 + n) (6 - n + n^2)/720, {n, 40}]

PROG

(PARI) vector(40, n, n*(n+1)*(n+2)*(n+3)*(n+4)*(n^2-n+6)/720) \\ Bruno Berselli, Apr 15 2015

CROSSREFS

Cf. A000580.

Cf. similar sequences listed in A256859.

Sequence in context: A027903 A231069 A319235 * A287221 A119965 A229729

Adjacent sequences:  A256858 A256859 A256860 * A256862 A256863 A256864

KEYWORD

nonn,easy

AUTHOR

Luciano Ancora, Apr 14 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 03:51 EST 2019. Contains 319184 sequences. (Running on oeis4.)