login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256852 Number of ways to write prime(n) = a^2 + b^4. 5
1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

a(A049084(A028916(n))) > 0; a(A049084(A256863(n))) = 0;

Conjecture: a(n) <= 2, empirically checked for the first 10^6 primes.

The conjecture is true, because by the uniqueness part of Fermat's two-squares theorem, at most one duplicate of a^2 + b^4 can exist. Namely, if a is a square, say a = B^2, then a^2 + b^4 = A^2 + B^4 where A = b^2. - Jonathan Sondow, Oct 03 2015

Friedlander and Iwaniec proved that a(n) > 0 infinitely often. - Jonathan Sondow, Oct 05 2015

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Art of Problem Solving, Fermat's Two Squares Theorem

John Friedlander and Henryk Iwaniec, Using a parity-sensitive sieve to count prime values of a polynomial, PNAS, vol. 94 no. 4, pp. 1054-1058.

Wikipedia, Friedlander-Iwaniec theorem

EXAMPLE

First numbers n, such that a(n) > 0:

.   k |  n |   prime(n)                    | a(n)

. ----+----+-------------------------------+-----

.   1 |  1 |    2 = 1^2 + 1^4              |   1

.   2 |  3 |    5 = 2^2 + 1^4              |   1

.   3 |  7 |   17 = 1^2 + 2^4 = 4^2 + 1^4  |   2

.   4 | 12 |   37 = 6^2 + 1^4              |   1

.   5 | 13 |   41 = 5^2 + 2^4              |   1

.   6 | 25 |   97 = 4^2 + 3^4 = 9^2 + 2^4  |   2

.   7 | 33 |  101 = 10^2 + 1^4             |   1

.   8 | 42 |  181 = 10^2 + 3^4             |   1

.   9 | 45 |  197 = 14^2 + 1^4             |   1

.  10 | 53 |  241 = 15^2 + 2^4             |   1

.  11 | 55 |  257 = 1^2 + 4^4 = 16^2 + 1^4 |   2

.  12 | 59 |  277 = 14^2 + 3^4             |   1

.  13 | 60 |  281 = 5^2 + 4^4              |   1

.  14 | 68 |  337 = 9^2 + 4^4 = 16^2 + 3^4 |   2

.  15 | 79 |  401 = 20^2 + 1^4             |   1

.  16 | 88 |  457 = 21^2 + 2^4             |   1 .

PROG

(Haskell)

a256852 n = a256852_list !! (n-1)

a256852_list = f a000040_list [] $ tail a000583_list where

   f ps'@(p:ps) us vs'@(v:vs)

     | p > v     = f ps' (v:us) vs

     | otherwise = (sum $ map (a010052 . (p -)) us) : f ps us vs'

CROSSREFS

Cf. A000040, A000290, A000583, A010052, A002645, A028916, A256863.

Sequence in context: A281154 A245536 A291203 * A128616 A270417 A266344

Adjacent sequences:  A256849 A256850 A256851 * A256853 A256854 A256855

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Apr 11 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 22 08:43 EST 2018. Contains 298042 sequences.