login
A256826
a(n) = the smallest number k such that A256824(k) = A256825(n).
3
1, 101, 2, 3, 41, 5, 61, 7, 181, 19, 202, 103, 23, 401, 4, 43, 505, 25, 15, 451, 601, 122, 163, 461, 1661, 107, 127, 37, 47, 157, 67, 1801, 281, 83, 1481, 5581, 1861, 187, 109, 29, 9, 149, 59, 619, 79, 89, 2003, 404, 403, 123, 10, 503, 115, 4051, 12451, 453
OFFSET
1,2
COMMENTS
A256824(n) = reverse concatenation of distinct digits of all divisors of n in base 10, A256825(n) = possible values of A256824(m) in increasing order.
Finite sequence with 512 terms. Maximal term is a(185) = 88511.
EXAMPLE
a(11) = 202 because 202 is the smallest number k such that reverse concatenation of distinct digits of all divisors of k (i.e. 1, 2, 101, 202) in base 10 = A256824(k) = A256824(202) = A256825(11) = 210.
PROG
(Magma) A256826:=func<n | exists(r){k: k in [1..100000] |
Seqint(Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(k)])))) eq n} select r else 0>; [A256826(n): n in[A256825(n)]]
CROSSREFS
KEYWORD
nonn,base,fini,full
AUTHOR
Jaroslav Krizek, Apr 13 2015
STATUS
approved