login
A256818
Number of length n+3 0..1 arrays with at most two downsteps in every n consecutive neighbor pairs.
1
16, 32, 64, 128, 245, 442, 753, 1220, 1894, 2836, 4118, 5824, 8051, 10910, 14527, 19044, 24620, 31432, 39676, 49568, 61345, 75266, 91613, 110692, 132834, 158396, 187762, 221344, 259583, 302950, 351947, 407108, 469000, 538224, 615416, 701248
OFFSET
1,1
COMMENTS
Row 3 of A256816.
LINKS
FORMULA
Empirical: a(n) = (1/120)*n^5 + (1/12)*n^4 + (31/24)*n^3 - (31/12)*n^2 + (66/5)*n + 4.
Empirical g.f.: x*(16 - 64*x + 112*x^2 - 96*x^3 + 37*x^4 - 4*x^5) / (1 - x)^6. - Colin Barker, Jan 21 2018
EXAMPLE
Some solutions for n=4:
..0....1....1....1....1....1....1....0....0....1....0....1....0....1....1....0
..1....1....1....1....1....1....0....1....0....0....1....0....0....1....1....1
..1....1....1....1....1....1....1....0....1....1....0....0....0....0....0....0
..0....0....1....0....1....0....1....1....1....1....0....1....0....1....1....1
..1....0....0....1....1....1....0....1....1....1....1....0....1....0....0....0
..0....0....0....0....1....1....0....1....0....0....0....1....1....0....1....1
..0....1....0....1....1....1....0....0....0....1....0....1....0....0....0....0
CROSSREFS
Cf. A256816.
Sequence in context: A335161 A239751 A261782 * A048170 A340624 A067053
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 10 2015
STATUS
approved