login
A256814
Number of length n+6 0..1 arrays with at most two downsteps in every 6 consecutive neighbor pairs.
1
120, 229, 442, 856, 1656, 3204, 6192, 11955, 23088, 44617, 86226, 166620, 321960, 622104, 1202016, 2322567, 4487848, 8671757, 16756074, 32377024, 62560664, 120883084, 233577104, 451331323, 872088416, 1685098737, 3256043394
OFFSET
1,1
COMMENTS
Column 6 of A256816.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -a(n-4) +3*a(n-6) -2*a(n-7) -6*a(n-9) +4*a(n-10).
Empirical g.f.: x*(120 - 11*x + 104*x^2 - 39*x^3 + 48*x^4 + 93*x^5 - 190*x^6 - 128*x^7 - 250*x^8 + 252*x^9) / ((1 - x)*(1 - x - 2*x^3 - x^4 - x^5 - 4*x^6 - 2*x^7 - 2*x^8 + 4*x^9)). - Colin Barker, Jan 24 2018
EXAMPLE
Some solutions for n=4:
..1....1....0....0....1....1....1....0....1....0....1....1....0....0....0....0
..1....0....1....0....0....1....0....1....0....0....0....0....0....1....0....0
..1....0....0....1....0....1....0....1....1....0....0....0....0....0....1....1
..0....0....1....1....1....1....0....0....1....1....0....1....1....0....1....0
..1....0....1....1....0....0....0....0....0....0....1....0....1....0....0....1
..1....1....1....1....1....1....0....0....1....0....0....0....0....0....1....0
..1....0....1....0....1....1....0....1....1....0....0....1....0....1....0....0
..1....1....0....1....0....1....0....0....1....1....1....1....1....0....0....0
..0....0....0....0....0....0....0....1....0....0....0....1....1....0....1....1
..1....0....1....1....0....0....0....0....1....0....0....1....1....1....1....0
CROSSREFS
Cf. A256816.
Sequence in context: A098565 A084142 A349745 * A232743 A146950 A028976
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 10 2015
STATUS
approved