Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #8 Dec 20 2018 12:42:08
%S 384,2304,13056,73984,413440,2310400,12865280,71639296,398552832,
%T 2217279744,12332535552,68593705216,381495652096,2121753477376,
%U 11800309124864,65628404490496,364996358434560,2029949420601600
%N Number of (n+2) X (1+2) 0..1 arrays with no 3 x 3 subblock diagonal sum zero and no antidiagonal sum three.
%H R. H. Hardin, <a href="/A256728/b256728.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 7*a(n-1) - 56*a(n-3) + 64*a(n-4).
%F Empirical g.f.: 128*x*(3 - 3*x - 24*x^2 + 32*x^3) / ((1 - 7*x + 8*x^2)*(1 - 8*x^2)). - _Colin Barker_, Dec 20 2018
%e Some solutions for n=4:
%e ..1..0..1....1..0..0....1..0..1....1..1..0....0..1..0....0..0..0....1..1..0
%e ..0..1..0....0..0..1....1..0..0....1..1..1....0..1..0....1..1..1....1..1..0
%e ..0..0..1....1..1..0....0..1..0....1..0..1....1..0..0....0..1..0....0..0..0
%e ..1..1..1....0..0..0....1..0..1....1..0..0....0..0..1....0..1..0....1..1..0
%e ..0..0..0....1..0..0....1..1..1....0..1..0....0..1..0....0..0..1....0..0..1
%e ..1..1..1....1..0..1....0..0..1....0..0..0....0..0..1....0..1..1....1..1..0
%Y Column 1 of A256735.
%K nonn
%O 1,1
%A _R. H. Hardin_, Apr 09 2015