%I #17 Apr 16 2015 15:26:46
%S 1,1,1,3,1,1,1,11,3,1,1,3,1,1,1,44,1,3,1,3,1,1,1,11,3,1,11,3,1,1,1,
%T 924,1,1,1,9,1,1,1,11,1,1,1,3,3,1,1,44,3,3,1,3,1,11,1,11,1,1,1,3,1,1,
%U 3,4004,1,1,1,3,1,1,1,33,1,1,3,3,1,1,1,44,44,1,1,3,1,1,1,11,1,3,1,3,1,1,1,924,1,3,3,9
%N From fifth root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fifth power is zeta function; sequence gives numerator of b(n).
%C Dirichlet g.f. of A256692(n)/A256693(n) is (zeta (x))^(1/5).
%C Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...
%H Wolfgang Hintze, <a href="/A256692/b256692.txt">Table of n, a(n) for n = 1..500</a>
%F with k = 5;
%F zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;
%F c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
%F Then solve c(k,n) = 1 for b(m);
%F a(n) = numerator(b)n)).
%e b(1), b(2), ... =
%e 1, 1/5, 1/5, 3/25, 1/5, 1/25, 1/5, 11/125, 3/25, 1/25, 1/5, 3/125, 1/5, 1/25, 1/25, 44/625, 1/5, 3/125, 1/5, 3/125, 1/25, 1/25, 1/5, 11/625
%t k = 5;
%t c[1, n_] = b[n];
%t c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]
%t nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];
%t sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
%t t = Table[b[n], {n, 1, nn}] /. sol[[1]];
%t num = Numerator[t] (* A256692 *)
%t den = Denominator[t] (* A256693 *)
%Y Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).
%K nonn,frac,mult
%O 1,4
%A _Wolfgang Hintze_, Apr 08 2015