login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256692 From fifth root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fifth power is zeta function; sequence gives numerator of b(n). 10
1, 1, 1, 3, 1, 1, 1, 11, 3, 1, 1, 3, 1, 1, 1, 44, 1, 3, 1, 3, 1, 1, 1, 11, 3, 1, 11, 3, 1, 1, 1, 924, 1, 1, 1, 9, 1, 1, 1, 11, 1, 1, 1, 3, 3, 1, 1, 44, 3, 3, 1, 3, 1, 11, 1, 11, 1, 1, 1, 3, 1, 1, 3, 4004, 1, 1, 1, 3, 1, 1, 1, 33, 1, 1, 3, 3, 1, 1, 1, 44, 44, 1, 1, 3, 1, 1, 1, 11, 1, 3, 1, 3, 1, 1, 1, 924, 1, 3, 3, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Dirichlet g.f. of A256692(n)/A256693(n) is (zeta (x))^(1/5).

Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...

LINKS

Wolfgang Hintze, Table of n, a(n) for n = 1..500

FORMULA

with k = 5;

zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;

c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;

Then solve c(k,n) = 1 for b(m);

a(n) = numerator(b)n)).

EXAMPLE

b(1), b(2), ... =

1, 1/5, 1/5, 3/25, 1/5, 1/25, 1/5, 11/125, 3/25, 1/25, 1/5, 3/125, 1/5, 1/25, 1/25, 44/625, 1/5, 3/125, 1/5, 3/125, 1/25, 1/25, 1/5, 11/625

MATHEMATICA

k = 5;

c[1, n_] = b[n];

c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]

nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];

sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];

t = Table[b[n], {n, 1, nn}] /. sol[[1]];

num = Numerator[t] (* A256692 *)

den = Denominator[t] (* A256693 *)

CROSSREFS

Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Sequence in context: A096066 A294746 A064085 * A228637 A152795 A121585

Adjacent sequences:  A256689 A256690 A256691 * A256693 A256694 A256695

KEYWORD

nonn,frac,mult

AUTHOR

Wolfgang Hintze, Apr 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 19:58 EDT 2019. Contains 321293 sequences. (Running on oeis4.)