login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256690 From fourth root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fourth power is zeta function; sequence gives numerator of b(n). 10
1, 1, 1, 5, 1, 1, 1, 15, 5, 1, 1, 5, 1, 1, 1, 195, 1, 5, 1, 5, 1, 1, 1, 15, 5, 1, 15, 5, 1, 1, 1, 663, 1, 1, 1, 25, 1, 1, 1, 15, 1, 1, 1, 5, 5, 1, 1, 195, 5, 5, 1, 5, 1, 15, 1, 15, 1, 1, 1, 5, 1, 1, 5, 4641, 1, 1, 1, 5, 1, 1, 1, 75, 1, 1, 5, 5, 1, 1, 1, 195, 195, 1, 1, 5, 1, 1, 1, 15, 1, 5, 1, 5, 1, 1, 1, 663, 1, 5, 5, 25 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Dirichlet g.f. of A256690(n)/A256691(n) is (zeta (x))^(1/4).

Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...

LINKS

Wolfgang Hintze, Table of n, a(n) for n = 1..500

FORMULA

with k = 4;

zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;

c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;

Then solve c(k,n) = 1 for b(m);

a(n) = numerator(b(n)).

EXAMPLE

b(1), b(2), ... = 1, 1/4, 1/4, 5/32, 1/4, 1/16, 1/4, 15/128, 5/32, 1/16, 1/4, 5/128, 1/4, 1/16, 1/16, 195/2048, ...

MATHEMATICA

k = 4;

c[1, n_] = b[n];

c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]

nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];

sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];

t = Table[b[n], {n, 1, nn}] /. sol[[1]];

num = Numerator[t] (* A256690 *)

den = Denominator[t] (* A256691 *)

CROSSREFS

Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Sequence in context: A183097 A285486 A230368 * A181985 A304320 A130511

Adjacent sequences:  A256687 A256688 A256689 * A256691 A256692 A256693

KEYWORD

nonn,frac,mult

AUTHOR

Wolfgang Hintze, Apr 09 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 05:45 EDT 2019. Contains 321344 sequences. (Running on oeis4.)