login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256689 From third root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose cube is zeta function; sequence gives denominator of b(n). 11
1, 3, 3, 9, 3, 9, 3, 81, 9, 9, 3, 27, 3, 9, 9, 243, 3, 27, 3, 27, 9, 9, 3, 243, 9, 9, 81, 27, 3, 27, 3, 729, 9, 9, 9, 81, 3, 9, 9, 243, 3, 27, 3, 27, 27, 9, 3, 729, 9, 27, 9, 27, 3, 243, 9, 243, 9, 9, 3, 81, 3, 9, 27, 6561, 9, 27, 3, 27, 9, 27, 3, 729, 3, 9, 27, 27, 9, 27, 3, 729, 243, 9, 3, 81, 9, 9, 9, 243, 3, 81, 9, 27, 9, 9, 9, 2187, 3, 27, 27, 81 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Dirichlet g.f. of A256688(n)/A256689(n) is (zeta (x))^(1/3).

Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...

LINKS

Wolfgang Hintze, Table of n, a(n) for n = 1..500

FORMULA

with k = 3;

zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;

c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;

Then solve c(k,n) = 1 for b(m);

a(n) = denominator(b(n)).

EXAMPLE

b(1), b(2), ... = 1, 1/3, 1/3, 2/9, 1/3, 1/9, 1/3, 14/81, 2/9, 1/9, 1/3, 2/27, 1/3, 1/9, 1/9, 35/243, ...

MATHEMATICA

k = 3;

c[1, n_] = b[n];

c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]

nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];

sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];

t = Table[b[n], {n, 1, nn}] /. sol[[1]];

num = Numerator[t] (* A256688 *)

den = Denominator[t] (* A256689 *)

CROSSREFS

Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Sequence in context: A134662 A145444 A165824 * A266533 A151710 A160121

Adjacent sequences:  A256686 A256687 A256688 * A256690 A256691 A256692

KEYWORD

nonn,frac,mult

AUTHOR

Wolfgang Hintze, Apr 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 12:22 EDT 2019. Contains 328026 sequences. (Running on oeis4.)