login
A256687
Decimal expansion of the [negated] abscissa of the Gamma function local minimum in the interval [-10,-9].
11
9, 7, 0, 2, 6, 7, 2, 5, 4, 0, 0, 0, 1, 8, 6, 3, 7, 3, 6, 0, 8, 4, 4, 2, 6, 7, 6, 4, 8, 9, 4, 2, 1, 5, 3, 1, 8, 5, 7, 7, 5, 5, 0, 5, 9, 9, 8, 2, 1, 9, 1, 2, 4, 8, 6, 4, 3, 4, 9, 7, 4, 8, 4, 7, 9, 4, 5, 5, 5, 1, 2, 2, 7, 0, 3, 0, 0, 8, 6, 5, 3, 6, 3, 3, 8, 6, 9, 9, 7, 0, 5, 3, 0, 5, 7, 1, 2, 1, 9, 9, 3, 7, 4
OFFSET
1,1
FORMULA
Solution to PolyGamma(x) = 0 in the interval [-10,-9].
EXAMPLE
Gamma(-9.7026725400018637360844267648942153185775505998219124864...)
= 0.00000215741610452285054050313702063056774903546226316...
MATHEMATICA
digits = 103; x0 = x /. FindRoot[PolyGamma[0, x] == 0, {x, -19/2}, WorkingPrecision -> digits + 5]; RealDigits[x0, 10, digits] // First
KEYWORD
nonn,cons
AUTHOR
STATUS
approved