login
A256662
Sum of absolute values of terms in the minimal alternating Fibonacci representation of n.
3
0, 1, 2, 3, 6, 5, 10, 9, 8, 19, 16, 15, 14, 13, 30, 31, 26, 27, 24, 23, 22, 21, 48, 49, 50, 53, 42, 43, 44, 39, 40, 37, 36, 35, 34, 77, 78, 79, 82, 81, 86, 85, 68, 69, 70, 71, 74, 63, 64, 65, 60, 61, 58, 57, 56, 55, 124, 125, 126, 129, 128, 133, 132, 131
OFFSET
0,3
COMMENTS
The terms are distinct. See A256655 for definitions.
LINKS
EXAMPLE
Minimal alternating Fibonacci representations:
R(0) = 0
R(1) = 1
R(2) = 2
R(3) = 3
R(4) = 5 - 1, so that a(4) = 6.
R(9) = 13 - 5 + 1, so that a(9) = 19.
MATHEMATICA
b[n_] = Fibonacci[n]; bb = Table[b[n], {n, 1, 70}];
h[0] = {1}; h[n_] := Join[h[n - 1], Table[b[n + 2], {k, 1, b[n]}]];
g = h[23]; r[0] = {0};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];
Table[Total[Abs[r[n]]], {n, 0, 100}] (* A256662 *)
Table[Total[(Abs[r[n]] + r[n])/2], {n, 0, 100}] (* A256663 *)
Table[Total[(Abs[r[n]] - r[n])/2], {n, 0, 100}] (* A256664 *)
CROSSREFS
Sequence in context: A196330 A332462 A358137 * A055944 A331633 A350801
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 08 2015
STATUS
approved