login
30-gonal pyramidal numbers: a(n) = n*(n+1)*(28*n-25)/6.
2

%I #32 Sep 08 2022 08:46:11

%S 0,1,31,118,290,575,1001,1596,2388,3405,4675,6226,8086,10283,12845,

%T 15800,19176,23001,27303,32110,37450,43351,49841,56948,64700,73125,

%U 82251,92106,102718,114115,126325,139376,153296,168113,183855,200550,218226,236911,256633

%N 30-gonal pyramidal numbers: a(n) = n*(n+1)*(28*n-25)/6.

%C See comments in A256645.

%C This sequence is related to A051868 by a(n) = n*A051868(n) - Sum_{i=0..n-1} A051868(i). [_Bruno Berselli_, Apr 09 2015]

%D E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (28th row of the table).

%H Luciano Ancora, <a href="/A256650/b256650.txt">Table of n, a(n) for n = 0..1000</a>

%H Luciano Ancora, <a href="/A256645/a256645_1.pdf">Polygonal and Pyramidal numbers</a>, Section 3.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F G.f.: x*(1 + 27*x)/(1 - x)^4.

%F a(n) = A000292(n) + 27*A000292(n-1).

%t Table[n (n + 1) (28 n - 25)/6, {n, 0, 40}]

%t LinearRecurrence[{4, -6, 4, -1}, {0, 1, 31, 118}, 40] (* _Vincenzo Librandi_, Apr 08 2015 *)

%o (Magma) [n*(n+1)*(28*n-25)/6: n in [0..50]]; // _Vincenzo Librandi_, Apr 08 2015

%Y Partial sums of A254474.

%Y Cf. similar sequences listed in A237616.

%Y Cf. A000292, A051868.

%K nonn,easy

%O 0,3

%A _Luciano Ancora_, Apr 07 2015