login
A256603
Numbers D such that D^2 = A^3 + B^4 + C^5 has more than one solution in positive integers (A, B, C).
5
305, 525, 1206, 1257, 1395, 2048, 2213, 3072, 4348, 6400, 16385, 16640, 16704, 20631, 22872, 23256, 30968, 31407, 32769, 62943, 74515, 77713, 77824, 79776, 82565, 84775, 90432, 98739, 117600, 121250, 133696, 163525, 165628, 171576, 198400, 199872, 243225
OFFSET
1,1
COMMENTS
A subsequence of A256091. Sequences A256604 and A256652 are the analog for A180241 and A255830.
LINKS
EXAMPLE
(A, B, C) = (32, 128, 1): 32^3 + 128^4 + 1^5 = 32768 + 268435456 + 1 = 268468225 = 16385^2
(A, B, C) = (1, 128, 8): 1^3 + 128^4 + 8^5 = 1 + 268435456 + 32768 = 268468225 = 16385^2
so 16385 is a term.
PROG
(PARI) for(D=1, 9999, f=-1; for(C=1, sqrtn(D^2-1, 5), for(B=1, sqrtn(D^2-C^5-.5, 4), ispower(D^2-C^5-B^4, 3)&&f++&print1(D", ")+next(3))))
KEYWORD
nonn
AUTHOR
M. F. Hasler, Apr 06 2015
EXTENSIONS
Inserted a(11),a(16) and added a(19)-a(37) by Lars Blomberg, Apr 17 2015
STATUS
approved