login
A256556
If n = 10k+m (0 <= m <= 9) then a(n) = n*k^m.
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 42, 88, 184, 384, 800, 1664, 3456, 7168, 14848, 30, 93, 288, 891, 2754, 8505, 26244, 80919, 249318, 767637, 40, 164, 672, 2752, 11264, 46080, 188416, 770048, 3145728, 12845056, 50, 255, 1300, 6625
OFFSET
1,10
LINKS
EXAMPLE
10 yields 10*(1^0) = 10;
43 yields 43*(4^3)= 43*64=2754;
68 yields 68*(6^8)= 68*1679616 = 114213888.
MAPLE
f:=proc(n) local k, m; m := (n mod 10); k := (n-m)/10; n*k^m; end;
[seq(f(n), n=1..40)];
PROG
(Haskell)
a256556 n = n * uncurry (^) (divMod n 10)
-- Reinhard Zumkeller, May 02 2015
CROSSREFS
Sequence in context: A175405 A225683 A326734 * A063662 A069715 A248499
KEYWORD
nonn,look
AUTHOR
Andy Edwards, Apr 01 2015
EXTENSIONS
Entry revised by N. J. A. Sloane, May 02 2015
STATUS
approved