OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
FORMULA
Expansion of q * f(-q)^2 * f(-q^2)^7 * f(-q^4)^2 in powers of q where f() is a Ramanujan theta function.
Expansion of eta(q)^2 * eta(q^2)^7 * eta(q^4)^2 in powers of q.
Euler transform of period 4 sequence [ -2, -9, -2, -11, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2^(11/2) (t/i)^(11/2) f(t) where q = exp(2 Pi i t).
G.f.: x * Product_{k>0} (1 - x^k)^2 * (1 - x^(2*k))^7 * (1 - x^(4*k))^2.
a(8*n + 7) = 0. a(4*n) = 16 * a(n).
EXAMPLE
G.f. = q - 2*q^2 - 8*q^3 + 16*q^4 + 20*q^5 - 36*q^6 - 32*q^8 - 75*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^2 QPochhammer[ q^2]^7 QPochhammer[ q^4]^2, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A)^7 * eta(x^4 + A)^2, n))};
(Magma) Basis( CuspForms( Gamma1(4), 11/2), 50)[1];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Apr 01 2015
STATUS
approved