%I #11 Apr 12 2015 13:07:51
%S 1,0,1,0,1,3,0,2,9,13,0,6,33,78,73,0,24,150,455,730,501,0,120,822,
%T 2925,6205,7515,4051,0,720,5292,21112,53655,87675,85071,37633,0,5040,
%U 39204,170716,494137,981960,1304422,1053724,394353
%N Triangle read by rows, T(n,k) = |n,k|*h(k), where |n,k| are the Stirling cycle numbers and h(k) = hypergeom([-k+1,-k],[],1), for n>=0 and 0<=k<=n.
%F T(n,k) = A132393(n,k)*A000262(k).
%F T(n,n) = A000262(n).
%F T(n+1,1) = n!.
%F Row sums are A088815.
%F Alternating row sums are (-1)^n*A088819(n).
%e Triangle starts:
%e [1]
%e [0, 1]
%e [0, 1, 3]
%e [0, 2, 9, 13]
%e [0, 6, 33, 78, 73]
%e [0, 24, 150, 455, 730, 501]
%e [0, 120, 822, 2925, 6205, 7515, 4051]
%o (Sage)
%o A000262 = lambda n: simplify(hypergeometric([-n+1, -n], [], 1))
%o A256548 = lambda n,k: A000262(k)*stirling_number1(n,k)
%o for n in range(7): [A256548(n,k) for k in (0..n)]
%Y Cf. A000262, A088815, A088819, A132393, A256549.
%K nonn,tabl,easy
%O 0,6
%A _Peter Luschny_, Apr 12 2015