login
Triangle read by rows, T(n,k) = |n,k|*h(k), where |n,k| are the Stirling cycle numbers and h(k) = hypergeom([-k+1,-k],[],1), for n>=0 and 0<=k<=n.
1

%I #11 Apr 12 2015 13:07:51

%S 1,0,1,0,1,3,0,2,9,13,0,6,33,78,73,0,24,150,455,730,501,0,120,822,

%T 2925,6205,7515,4051,0,720,5292,21112,53655,87675,85071,37633,0,5040,

%U 39204,170716,494137,981960,1304422,1053724,394353

%N Triangle read by rows, T(n,k) = |n,k|*h(k), where |n,k| are the Stirling cycle numbers and h(k) = hypergeom([-k+1,-k],[],1), for n>=0 and 0<=k<=n.

%F T(n,k) = A132393(n,k)*A000262(k).

%F T(n,n) = A000262(n).

%F T(n+1,1) = n!.

%F Row sums are A088815.

%F Alternating row sums are (-1)^n*A088819(n).

%e Triangle starts:

%e [1]

%e [0, 1]

%e [0, 1, 3]

%e [0, 2, 9, 13]

%e [0, 6, 33, 78, 73]

%e [0, 24, 150, 455, 730, 501]

%e [0, 120, 822, 2925, 6205, 7515, 4051]

%o (Sage)

%o A000262 = lambda n: simplify(hypergeometric([-n+1, -n], [], 1))

%o A256548 = lambda n,k: A000262(k)*stirling_number1(n,k)

%o for n in range(7): [A256548(n,k) for k in (0..n)]

%Y Cf. A000262, A088815, A088819, A132393, A256549.

%K nonn,tabl,easy

%O 0,6

%A _Peter Luschny_, Apr 12 2015