This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256539 Number of partitions of 4n into at most 5 parts. 2
 1, 5, 18, 47, 101, 192, 333, 540, 831, 1226, 1747, 2418, 3266, 4319, 5608, 7166, 9027, 11229, 13811, 16814, 20282, 24260, 28796, 33940, 39744, 46262, 53550, 61667, 70673, 80631, 91606, 103664, 116875, 131310, 147042, 164147, 182702, 202787, 224484, 247877 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,4,-4,3,-2,3,-3,1). FORMULA G.f.: -(x^7+4*x^6+5*x^5+7*x^4+6*x^3+6*x^2+2*x+1) / ((x-1)^5*(x^2+x+1)*(x^4+x^3+x^2+x+1)). a(n) = A001401(4n). - Alois P. Heinz, Apr 01 2015 EXAMPLE For n=2 the 18 partitions of 2*4 = 8 are [8], [1,7], [2,6], [3,5], [4,4], [1,1,6], [1,2,5], [1,3,4], [2,2,4], [2,3,3], [1,1,1,5], [1,1,2,4], [1,1,3,3], [1,2,2,3], [2,2,2,2], [1,1,1,1,4], [1,1,1,2,3] and [1,1,2,2,2]. PROG (PARI) concat(1, vector(40, n, k=0; forpart(p=4*n, k++, , [1, 5]); k)) (PARI) Vec(-(x^7+4*x^6+5*x^5+7*x^4+6*x^3+6*x^2+2*x+1) / ((x-1)^5*(x^2+x+1)*(x^4+x^3+x^2+x+1)) + O(x^100)) CROSSREFS Cf. A001401, A238340 (4 parts), A256540 (6 parts). Sequence in context: A272792 A273566 A217866 * A109363 A218214 A146213 Adjacent sequences:  A256536 A256537 A256538 * A256540 A256541 A256542 KEYWORD nonn,easy AUTHOR Colin Barker, Apr 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 15 09:36 EST 2018. Contains 317232 sequences. (Running on oeis4.)