

A256510


Primes p such that phi(p2) = phi(p1).


1



3, 5, 17, 257, 977, 3257, 5189, 11717, 13367, 22937, 65537, 307397, 491537, 589409, 983777, 1659587, 2822717, 3137357, 5577827, 6475457, 7378373, 8698097, 10798727, 32235737, 37797437, 39220127, 39285437, 51555137, 52077197, 56992553, 63767927, 70075997
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

First 5 Fermat primes from A019434 are terms of this sequence.
a(2) = 5 is only term of a(n) such that a(n)  2 is a prime q, i.e., prime 3 is only prime q such that phi(q) = phi(q+1).
If there are any other Fermat primes, they will not be in the sequence.  Robert Israel, Mar 31 2015


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..819 (terms below 10^13, calculated from the bfile at A001274)


EXAMPLE

Prime 17 is in the sequence because phi(15) = phi(16) = 8.


MAPLE

with(numtheory): A256510:=n>`if`(isprime(n) and phi(n2) = phi(n1), n, NULL): seq(A256510(n), n=1..10^5); # Wesley Ivan Hurt, Mar 31 2015


MATHEMATICA

Select[Prime@ Range@ 100000, EulerPhi[#  2] == EulerPhi[#  1] &] (* Michael De Vlieger, Mar 31 2015 *)


PROG

(MAGMA) [n: n in [3..10^7]  IsPrime(n) and EulerPhi(n2) eq EulerPhi(n1)]


CROSSREFS

Cf. A000010, A000215, A001274, A019434.
Sequence in context: A307843 A023394 A176689 * A260377 A056130 A273871
Adjacent sequences: A256507 A256508 A256509 * A256511 A256512 A256513


KEYWORD

nonn


AUTHOR

Jaroslav Krizek, Mar 31 2015


STATUS

approved



