

A256501


Decimal expansion of the positive solution to x = 4*(1exp(x)).


4



3, 9, 2, 0, 6, 9, 0, 3, 9, 4, 8, 7, 2, 8, 8, 6, 3, 4, 3, 5, 6, 0, 8, 9, 1, 3, 5, 2, 6, 1, 3, 5, 3, 6, 2, 2, 0, 5, 2, 5, 6, 2, 7, 3, 7, 1, 2, 0, 7, 9, 8, 4, 5, 3, 0, 4, 0, 1, 1, 7, 5, 0, 0, 5, 7, 9, 0, 5, 0, 5, 6, 4, 8, 3, 6, 6, 7, 0, 5, 7, 5, 7, 4, 3, 3, 6, 5, 6, 6, 0, 1, 8, 9, 4, 8, 3, 6, 5, 8, 9, 0, 4, 7, 3, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Each of the positive solutions to x = q*(1exp(x)) obtained for q = 2, 3, 4, and 5, appears in several formulas pertinent to the Planck's blackbody radiation law. For a given q, the solution can be also written as q+W(q/exp(q)), where W is the Lambert function. Here q = 4.


LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..2000
SpectralCalc, Calculation of Blackbody Radiance, Appendix C.
Wikipedia, Planck's law


EXAMPLE

3.9206903948728863435608913526135362205256273712079845304011750...


MATHEMATICA

RealDigits[x/.FindRoot[x==4(1Exp[x]), {x, 3}, WorkingPrecision>120]] [[1]] (* Harvey P. Dale, May 08 2017 *)


PROG

(PARI) a4=solve(x=0.1, 10, x4*(1exp(x))) \\ Use real precision in excess


CROSSREFS

Cf. A094090 (q=5), A194567 (q=3), A256500 (q=2).
Sequence in context: A128753 A179430 A016048 * A229099 A021259 A194807
Adjacent sequences: A256498 A256499 A256500 * A256502 A256503 A256504


KEYWORD

nonn,cons


AUTHOR

Stanislav Sykora, Apr 01 2015


STATUS

approved



