The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256441 Binary representation of base-(i-1) expansion of -n: replace i-1 with 2 in base-(i-1) expansion of -n. 4
 0, 29, 28, 17, 16, 205, 204, 193, 192, 221, 220, 209, 208, 7437, 7436, 7425, 7424, 7453, 7452, 7441, 7440, 7629, 7628, 7617, 7616, 7645, 7644, 7633, 7632, 7181, 7180, 7169, 7168, 7197, 7196, 7185, 7184, 7373, 7372, 7361, 7360, 7389, 7388, 7377, 7376, 4365 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Here i = sqrt(-1). From Jianing Song, Jan 22 2023: (Start) Also binary representation of base-(-1-i) expansion of -n. Write out -n in base -4 (A212526), change each digit 0, 1, 2, 3 to 0000, 0001, 1100, 1101 respectively, then interpret as a binary number. (End) LINKS Paul Tek, Table of n, a(n) for n = 0..10000 Paul Tek, Perl program for this sequence Wikipedia, Complex-base system FORMULA For n >= 1, a(4*n-0..3) = 16 * A066321(n) + 0, 1, 12, 13 respectively. - Jianing Song, Jan 22 2023 EXAMPLE a(5) = 205 = 2^7 + 2^6 + 2^3 + 2^2 + 2^0 since (i-1)^7 + (i-1)^6 + (i-1)^3 + (i-1)^2 + (i-1)^0 = -5. PROG (Perl) See Links section. (PARI) a(n) = my(v = [-n, 0], x=0, digit=0, a, b); while(v!=[0, 0], a=v[1]; b=v[2]; v[1]=-2*(a\2)+b; v[2]=-(a\2); x+=(a%2)*2^digit; digit++); x \\ Jianing Song, Jan 22 2023; [a, b] represents the number a + b*(-1+i) CROSSREFS Cf. A066321. Sequence in context: A307129 A303615 A291492 * A261310 A022985 A023471 Adjacent sequences: A256438 A256439 A256440 * A256442 A256443 A256444 KEYWORD base,nonn,easy AUTHOR Paul Tek, Mar 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 7 12:58 EST 2023. Contains 360123 sequences. (Running on oeis4.)