Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jun 09 2018 10:00:00
%S 1,7,35,79,243,319,787,1155,1859,2295,4267,4891,8295,9743,11851,14539,
%T 22191,24359,35427,39387,45915,51687,71171,76407,94911,105047,123251,
%U 134447,174003,180835,229783,253007,281447,305111,343315,360215,442547,476115,523111,552307
%N a(n) = number of tuples (a,b,c,d) of natural numbers a,b,c,d <= n with gcd(a,b)=gcd(b,c)=gcd(c,d)=gcd(d,a)=1.
%C The sequence has the asymptotics a(n) = rho*n^4 + O(n^3*log^2(n)) where rho=prod_p(1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.21777871661953... (product extended to primes). See A256392.
%H Juan Arias-de-Reyna, <a href="/A256391/b256391.txt">Table of n, a(n) for n = 1..100</a>
%H J. Arias de Reyna and R. Heyman, <a href="http://arxiv.org/abs/1403.2769">Counting tuples restricted by pairwise primality</a>, arXiv:1403.2769 [math.NT], 2014.
%H J. Arias de Reyna, R. Heyman, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Heyman/heyman6.html">Counting Tuples Restricted by Pairwise Coprimality Conditions</a>, J. Int. Seq. 18 (2015) 15.10.4
%F a(n) = sum_a sum_b sum_c sum_d mu(a) mu(b) mu(c) mu(d) [n/gcd(a,b)][n/gcd(b,c)][n/gcd(c,d)][n/gcd(d,a)], where mu is Moebius function, a,b,c,d run through natural numbers.
%e For n=2, a(2)=7 counting the tuples (1,1,1,1), (2,1,1,1), (1,2,1,1), (1,1,2,1), (1,1,1,2), (2,1,2,1), (1,2,1,2).
%t A[M_] := A[M] = Module[{X, a1, a2, a3, a4, K, count, k},
%t X = Flatten[
%t Table[{a1, a2, a3, a4}, {a1, 1, M}, {a2, 1, M}, {a3, 1, M}, {a4,
%t 1, M}], 3];
%t K = Length[X];
%t count = 0;
%t For[k = 1, k <= K, k++,
%t {a1, a2, a3, a4} = X[[k]];
%t If[(GCD[a1, a2] == 1) && (GCD[a2, a3] == 1) && (GCD[a3, a4] ==
%t 1) && (GCD[a4, a1] == 1), count = count + 1]];
%t count];
%t Table[A[n], {n, 1, 20}]
%Y Cf. A256390.
%K nonn
%O 1,2
%A _Juan Arias-de-Reyna_, Mar 27 2015