Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jan 19 2019 04:14:59
%S 1,4,13,22,55,64,133,172,247,280,469,508,781,868,997,1144,1621,1714,
%T 2323,2488,2785,3010,3907,4078,4837,5176,5833,6178,7627,7798,9463,
%U 10102,10927,11530,12631,13006,15379,16150,17311,17926,20863,21256
%N a(n) = number of triples (a,b,c) of natural numbers a,b,c <= n with gcd(a,b)=gcd(b,c)=gcd(c,a)=1.
%C The sequence has asymptotics rho*n^3+O(n^2 log^2n) with rho=prod_p(1-3/p^2+2/p^3)=0.2867474284344...(product on primes). See A065473.
%H Juan Arias-de-Reyna, <a href="/A256390/b256390.txt">Table of n, a(n) for n = 1..1399</a>
%H J. Arias de Reyna and R. Heyman, <a href="http://arxiv.org/abs/1403.2769">Counting tuples restricted by pairwise primality</a>, arXiv:1403.2769 [math.NT], 2014.
%H J. Arias de Reyna, R. Heyman, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Heyman/heyman6.html">Counting Tuples Restricted by Pairwise Coprimality Conditions</a>, J. Int. Seq. 18 (2015) 15.10.4
%F a(n) = sum_a sum_b sum_c mu(a) mu(b) mu(c) [n/gcd(a,b)][n/gcd(b,c)][n/gcd(c,a)], where mu(.) is Moebius function [x] integer part of x, and a,b,c run through natural numbers.
%e a(3)=13 because the 13 triples (1,1,1), (1,1,2), (1,2,1), (2,1,1), (1,1,3), (1,3,1), (3,1,1), (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
%t A[M_] := A[M] = Module[{X, a1, a2, a3, K, count, k},
%t X = Flatten[
%t Table[{a1, a2, a3}, {a1, 1, M}, {a2, 1, M}, {a3, 1, M}], 2];
%t K = Length[X];
%t count = 0;
%t For[k = 1, k <= K, k++,
%t {a1, a2, a3} = X[[k]];
%t If[(GCD[a1, a2] == 1) && (GCD[a2, a3] == 1) && (GCD[a3, a1] ==
%t 1), count = count + 1]];
%t count];
%t Table[A[n], {n, 1, 100}]
%Y Cf. A256391.
%K nonn
%O 1,2
%A _Juan Arias-de-Reyna_, Mar 27 2015