|
|
A256363
|
|
Numbers that are multiple-digit narcissistic numbers in exactly four bases.
|
|
7
|
|
|
4901, 8450, 21125, 33125, 41405, 42050, 47125, 71825, 90625, 117325, 142805, 142885, 151250, 184093, 244205, 272000, 325125, 361250, 520625, 535717, 546325, 638450, 690625, 777925, 861125, 874225, 903125, 982125, 990125, 1035125, 1053405
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..31.
W. Schneider, Perfect Digital Invariants: Pluperfect Digital Invariants(PPDIs)
Eric Weisstein's World of Mathematics, Narcissistic Number
Wikipedia, Narcissistic number
|
|
EXAMPLE
|
a(1) = 4901 because this is the first number that is a multiple-digit narcissistic number in exactly four bases (75, 99, 186 and 4831).
|
|
PROG
|
(PARI) for(n=3, 1000000, k=0; for(z=2, n, y=n; j=0; L=List(); until(y==0, x=y%z; j++; listinsert(L, x, j); while(!((y%z)==0), y--); y=y/z); t=0; for(p=1, j, t+=L[p]^j); if(n==t, k++)); if(k==4, print1(n, ", ")))
|
|
CROSSREFS
|
Cf. A005188.
Cf. A256359 (every number of bases).
Cf. A256360, A256361, A256362, A256364, A256365 (1, 2, 3, 5 and 6 bases).
Cf. A256459 (first occurrences).
Sequence in context: A339939 A321146 A107545 * A031568 A083607 A168028
Adjacent sequences: A256360 A256361 A256362 * A256364 A256365 A256366
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Tim Johannes Ohrtmann, Mar 26 2015
|
|
STATUS
|
approved
|
|
|
|