login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256357 L.g.f.: log( 1 + Sum_{n>=1} x^(n^2) + x^(2*n^2) ). 4
1, 1, -2, 5, -4, -2, 8, -3, 7, -4, -10, 14, -12, 8, 8, -19, 18, 7, -18, 20, -16, -10, 24, -18, 21, -12, -20, 40, -28, 8, 32, -51, 20, 18, -32, 59, -36, -18, 24, -28, 42, -16, -42, 38, -28, 24, 48, -82, 57, 21, -36, 44, -52, -20, 40, -24, 36, -28, -58, 104, -60, 32, 56, -115, 48, 20, -66, 90, -48, -32, 72, -45, 74, -36, -42, 62, -80, 24, 80, -124, 61, 42, -82, 112, -72, -42, 56, -58, 90, -28, -96, 120, -64, 48, 72, -210, 98, 57, -70, 145, -100, -36, 104, -68, 64, -52, -106, 140, -108, 40, 72, -152, 114, 36, -96, 92, -84, -58, 144, -88, 111 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..1024

Cooper, Shaun; Hirschhorn, Michael. On Some Finite Product Identities. Rocky Mountain J. Math. 31 (2001), no. 1, 131--139.

FORMULA

L.g.f.: Sum_{n>=0} log( (1-x^(3+8*n))*(1-x^(5+8*n))*(1-x^(8+8*n)) / ( (1-x^(1+8*n))*(1-x^(4+8*n))*(1-x^(7+8*n)) ) ). [See Cooper and Hirschhorn reference]

From formulas given by Michael Somos in A093709: (Start)

L.g.f.: log( (theta_3(x) + theta_3(x^2)) / 2).

L.g.f.: Log( psi(q^4) * f(-q^3, -q^5) / f(-q, -q^7) ) in powers of q where psi(), f() are Ramanujan theta functions.

L.g.f.: Log( f(-q^3, -q^5)^2 / psi(-q) ) in powers of q where psi(), f() are Ramanujan theta functions.

(End)

a(n) == 1 (mod 2) iff n is a square or twice square (A028982).

a(n) = -sigma(n) + [Sum_{d|n, d==2 (mod 4)} d] + [Sum_{d|n, d==1,4,7 (mod 8)} 2*d].

EXAMPLE

L.g.f.: L(x) = x + x^2/2 - 2*x^3/3 + 5*x^4/4 - 4*x^5/5 - 2*x^6/6 + 8*x^7/7 - 3*x^8/8 + 7*x^9/9 - 4*x^10/10 - 10*x^11/11 + 14*x^12/12 - 12*x^13/13 + 8*x^14/14 + 8*x^15/15 - 19*x^16/16 +...+ a(n)*x^n/n +...

where

exp(L(x)) = 1 + x + x^2 + x^4 + x^8 + x^9 + x^16 + x^18 + x^25 + x^32 + x^36 + x^49 + x^50 + x^64 + x^72 + x^81 + x^98 + x^100 +...+ x^A028982(n) +...

PROG

(PARI) {a(n) = local(L=x); L = log(1 + sum(k=1, sqrtint(n+1), x^(k^2) + x^(2*k^2)) +x*O(x^n)); n*polcoeff(L, n)}

for(n=1, 121, print1(a(n), ", "))

(PARI) {a(n) = -sigma(n) + sumdiv(n, d, if(d%4==2, d)) + 2*sumdiv(n, d, if((d%8)%3==1, d))}

for(n=1, 121, print1(a(n), ", "))

(PARI) {a(n) = local(L, X=x+x*O(x^n)); L = sum(m=0, n\8+1, log( (1-x^(3+8*m))*(1-x^(5+8*m))*(1-x^(8+8*m)) / ( (1-x^(1+8*m))*(1-x^(4+8*m))*(1-x^(7+8*m) +x*O(x^n)) ))); n*polcoeff(L, n)}

for(n=1, 121, print1(a(n), ", "))

CROSSREFS

Cf. A258655, A258328, A028982, A093709.

Sequence in context: A152669 A049060 A092462 * A160826 A057149 A087499

Adjacent sequences:  A256354 A256355 A256356 * A256358 A256359 A256360

KEYWORD

sign

AUTHOR

Paul D. Hanna, Jun 03 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 21:37 EST 2019. Contains 319206 sequences. (Running on oeis4.)