login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256328 Number of partitions of 6n into exactly 4 parts. 3
0, 2, 15, 47, 108, 206, 351, 551, 816, 1154, 1575, 2087, 2700, 3422, 4263, 5231, 6336, 7586, 8991, 10559, 12300, 14222, 16335, 18647, 21168, 23906, 26871, 30071, 33516, 37214, 41175, 45407, 49920, 54722, 59823, 65231, 70956, 77006, 83391, 90119, 97200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).

FORMULA

a(n) = (-1+(-1)^n+6*n^2+12*n^3)/8.

a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5) for n>4.

G.f.: x*(x+2)*(x^2+4*x+1) / ((x-1)^4*(x+1)).

EXAMPLE

For n=1 the 2 partitions of 6*1 = 6 are [1,1,1,3] and [1,1,2,2].

PROG

(PARI) concat(0, vector(40, n, k=0; forpart(p=6*n, k++, , [4, 4]); k))

(PARI) concat(0, Vec(x*(x+2)*(x^2+4*x+1)/((x-1)^4*(x+1)) + O(x^100)))

CROSSREFS

Cf. A256327 (5n), A256329 (7n).

Sequence in context: A162256 A229013 A323685 * A041719 A133777 A025213

Adjacent sequences:  A256325 A256326 A256327 * A256329 A256330 A256331

KEYWORD

nonn,easy

AUTHOR

Colin Barker, Mar 25 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 19:58 EDT 2019. Contains 321293 sequences. (Running on oeis4.)