login
A256323
a(n) = numerator of (1/n^3)*(-1/(n+1) + 16/(n+2) + 3/(4*(2*n+1)) - 81/(4*(2*n+3))), term of a BBP-type series representation of zeta(3) by V. Adamchik and S. Wagon.
1
31, 97, 113, 39, 3781, 257, 3131, 6791, 6287, 2113, 33193, 787, 5933, 2063, 26827, 16153, 115453, 11351, 53107, 92453, 23677, 3389, 277777, 52421, 118127, 99367, 147971, 82307, 547381, 4199, 24659, 365459, 266719, 72803, 951481, 172303, 373591
OFFSET
1,1
LINKS
Victor Adamchik and Stan Wagon, Pi: A 2000-Year Search Changes Direction
David Bailey, Peter Borwein, Simon Plouffe, On the rapid computation of various polylogarithmic constants
Eric Weisstein's MathWorld, BBP-Type Formula
FORMULA
a(n) = Numerator(1/n^3+1/(n+1)-2/(n+2)-6/(2*n+1)+6/(2*n+3)+1/n). - Peter Luschny, Mar 24 2015
MAPLE
a := n -> numer(1/n^3+1/(n+1)-2/(n+2)-6/(2*n+1)+6/(2*n+3)+1/n):
seq(a(n), n=1..37); # Peter Luschny, Mar 24 2015
MATHEMATICA
a[n_] := Numerator[(1/n^3)*(-1/(n+1) + 16/(n+2) + 3/(4*(2*n+1)) - 81/(4*(2*n+3)))]; Table[a[n], {n, 1, 40}]
PROG
(Magma) [Numerator((1/n^3)*(-1/(n+1)+16/(n+2)+3/(4*(2*n+1))-81/(4*(2*n+3)))): n in [1..40]]; // Vincenzo Librandi, Mar 24 2015
CROSSREFS
Cf. A002117, A256324 (denominators).
Sequence in context: A044599 A143032 A159014 * A142067 A081275 A139509
KEYWORD
nonn,frac,easy
AUTHOR
STATUS
approved