This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256310 Number of partitions of 2n into exactly 6 parts. 2
 0, 0, 0, 1, 2, 5, 11, 20, 35, 58, 90, 136, 199, 282, 391, 532, 709, 931, 1206, 1540, 1945, 2432, 3009, 3692, 4494, 5427, 6510, 7760, 9192, 10829, 12692, 14800, 17180, 19858, 22856, 26207, 29941, 34085, 38677, 43752, 49342, 55491, 62239, 69624, 77695, 86499 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The number of partitions of 2*(n-3) into at most 6 parts. - Colin Barker, Mar 31 2015 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,0,0,-3,1,1,0,0,1,1,-3,0,0,2,-1). FORMULA G.f.: x^3*(x^4+x^3+x^2+1) / ((x-1)^6*(x+1)*(x^2+x+1)^2*(x^4+x^3+x^2+x+1)). EXAMPLE For n=4 the 2 partitions of 2*4 = 8 are [1,1,1,1,1,3] and [1,1,1,1,2,2]. MATHEMATICA CoefficientList[Series[x^3 (x^4 + x^3 + x^2 + 1) / ((x - 1)^6 (x + 1) (x^2 + x + 1)^2 (x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 22 2015 *) PROG (PARI) concat(0, vector(40, n, k=0; forpart(p=2*n, k++, , [6, 6]); k)) (PARI) concat([0, 0, 0], Vec(x^3*(x^4+x^3+x^2+1)/((x-1)^6*(x+1)*(x^2+x+1)^2*(x^4+x^3+x^2+x+1)) + O(x^100))) CROSSREFS Cf. Similar sequences: A000212 (3 parts), A001477 (2 parts), A014126 (4 parts), A256309 (5 parts). Sequence in context: A038377 A261227 A022908 * A026390 A005575 A294745 Adjacent sequences:  A256307 A256308 A256309 * A256311 A256312 A256313 KEYWORD nonn,easy AUTHOR Colin Barker, Mar 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 13:25 EST 2019. Contains 319350 sequences. (Running on oeis4.)