%I #84 Jul 03 2019 19:09:17
%S 682775764735680,47184892811061120,50194833750826260,
%T 70151123608154420,76685404549625256,93295105984206480,
%U 94615738903617540,123483356772380760,141536742113504220,211283804186719200,214070508927033000
%N Magic constants of 4 X 4 pandiagonal magic squares composed of consecutive primes.
%C a(1) = 682775764735680, minimal 4 X 4 pandiagonal magic squares of consecutive primes, see A245721.
%H Dmitry Petukhov, <a href="/A256234/b256234.txt">Table of n, a(n) for n = 1..56</a>
%H <a href="http://dxdy.ru/post988507.html#p988507">Discussion at the scientific forum dxdy.ru</a> (in Russian)
%H <a href="http://stop.inferia.ru/">BOINC project</a> to search all up to 2^64
%H Natalia Makarova, <a href="/A256234/a256234_3.txt">Pandiagonal squares of order 4 composed of consecutive prime numbers</a>
%H Natalia Makarova, <a href="/A256234/a256234_4.txt">Symmetrical 16-tuples of consecutive primes, components for pandiagonal squares of order 4, from J. Wroblewski</a>
%e a(2) = 47184892811061120:
%e 11796223202765101 +
%e 0 148 232 336
%e 268 300 36 112
%e 126 22 358 210
%e 322 246 90 58
%e a(5) = 76685404549625256:
%e 19171351137406219 +
%e 0 100 112 168
%e 142 138 30 70
%e 78 22 190 90
%e 160 120 48 52
%Y Cf. A166113 (3 X 3 square), A245721.
%K nonn
%O 1,1
%A _Dmitry Petukhov_, Mar 20 2015
%E a(5) added by _Dmitry Petukhov_, Mar 25 2015
%E a(6), a(7) from an anonymous participant in the project, added by _Natalia Makarova_, Jul 16 2015
%E a(8) from Alexander Andreyev, added by _Natalia Makarova_, Mar 29 2016
%E a(9) from Alexander Andreyev, a(10) from an anonymous participant in the project, a(11) from Denis Ivanov, added by _Natalia Makarova_, Jun 13 2016
%E a(12)-a(18) are confirmed by BOINC project, Mar 19 2017
%E a(19)-a(32) are confirmed by BOINC project, Apr 06 2017
%E a(33)-a(56) are confirmed and added by BOINC project, May 17 2017