login
A256180
Exponential transform of the Fibonacci numbers.
8
1, 1, 2, 6, 21, 86, 404, 2121, 12264, 77272, 525941, 3839706, 29891370, 246906569, 2154904856, 19799299506, 190904273049, 1926229186162, 20288311652672, 222568337565537, 2537998989244956, 30029233006187756, 368050599579654557, 4665833729558724030
OFFSET
0,3
LINKS
FORMULA
E.g.f: exp(1/sqrt(5)*(exp((1+sqrt(5))*x/2)-exp((1-sqrt(5))*x/2))).
E.g.f: exp(2/5*sqrt(5)*exp(x/2)*sinh(sqrt(5)*x/2)).
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1) *F(j) *a(n-j), j=1..n))
end:
seq(a(n), n=0..30);
MATHEMATICA
Table[Sum[BellY[n, k, Fibonacci[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
CROSSREFS
Row sums of A346415.
Sequence in context: A090805 A150226 A326335 * A150227 A263852 A189243
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 18 2015
STATUS
approved