OFFSET
1,1
COMMENTS
a(n) is found by treating the digits of A248907(n) as power towers, so the sequence starts 2, 3, 2^2=4, 2^3=8, 3^2=9, 2^(2^2)=16, 3^3=27, 3^(2^2)=81, 2^(2^3)=256...
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..22
Vladimir Reshetnikov, 2-3 sequence puzzle, SeqFan list, Mar 18 2015.
FORMULA
A256179 = A256229 o A248907 = A256229 o A032810 o A185969, i.e., a(n) = A256229(A248907(n)) = A256229(A032810(A185969(n))).
Recurrence: a(1)=2, a(2)=3, a(3)=2^2, a(4)=2^3, a(5)=3^2, a(6)=2^(2^2), a(7)=3^3, a(8)=3^(2^2), a(9)=2^(2^3), a(10)=2^(3^2), a(11)=3^(2^3), a(12)=3^(3^2); and for n>6, a(2n)=3^a(n-1), a(2n-1)=2^a(n-1). - Vladimir Reshetnikov, Mar 19 2015
EXAMPLE
PROG
(PARI) A256179(n)=A256229(A248907[n]) \\ where A248907 is assumed to be defined as vector. - M. F. Hasler, Mar 19 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Bob Selcoe, Mar 18 2015
EXTENSIONS
More terms from M. F. Hasler, Mar 19 2015
STATUS
approved