login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256175 Babylonian Wurm - The change of direction in successive segments is recorded as 1 (clockwise) or -1 (counterclockwise). 0
1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

A Babylonian Wurm is constructed by starting at (0,0) with a unit vector pointing North and then a clockwise turn with the root 2 length vector pointing NE. For subsequent segments, progressively concatenate the next longest vector with integral endpoints on a Cartesian grid. (The squares of the lengths of these vectors are A001481.) The direction of the new vector is chosen to minimize the change in direction from the previous vector. If there is a tie, the direction will be chosen so the wurm continues to turn in the same direction as the previous turn. - Gordon Hamilton, Mar 17 2015

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . 2 . 3 . . . . . . . . . . . . . .

     . 1 . . . . 4 . . . . . . . . . . . .

     . o . . . . . . . . . . . . . . . . .

     . . . . . . . . 5 . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . 6 . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . 7 . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . 8 . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . 9 . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . .10 . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . .11 . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . .12 . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . .13 .

     . . . . . . . . . . . . . . . . . . .

     . . . . . . . . . . . . . . . . . . .

Is the number of consecutive 1s bounded? - Gordon Hamilton, Mar 31 2015

LINKS

Table of n, a(n) for n=1..25.

EXAMPLE

a(1) = 1 because the turn (0,0) to (0,1) to (1,2) is clockwise.

a(2) = 1 because the turn (0,1) to (1,2) to (3,2) is clockwise.

a(3) = 1 because the turn (1,2) to (3,2) to (5,1) is clockwise.

a(4) = 1 because the turn (3,2) to (5,1) to (7,-1) is clockwise.

a(5) = 1 because the turn (5,1) to (7,-1) to (7,-4) is clockwise.

At a(6) there is a choice of which direction to go because the change of direction would be the same for both the following:

(7,-1) to (7,-4) to (6,-7)  AND  (7,-1) to (7,-4) to (8,-7).

In the case of a tie we look back to see the direction of the turn in the previous step and since a(5) = 1 we copy that.  So it is the first option that we must choose: (7,-1) to (7,-4) to (6,-7).

a(7) = 1 because the turn (7,-4) to (6,-7) to (4,-10) is clockwise.

a(8) = -1 because the turn (6,-7) to (4,-10) to (4,-14) is counterclockwise.

CROSSREFS

Sequence in context: A015343 A296077 A322674 * A236861 A016300 A016126

Adjacent sequences:  A256172 A256173 A256174 * A256176 A256177 A256178

KEYWORD

sign,easy,more

AUTHOR

Gordon Hamilton, Mar 17 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 16:54 EDT 2019. Contains 326059 sequences. (Running on oeis4.)