login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256114 Numbers n such that digit_product(n^2) = (digit_product(n))^2 and n mod 10 > 0. 2
1, 2, 3, 101, 102, 103, 104, 105, 201, 202, 203, 205, 301, 302, 303, 305, 401, 402, 403, 405, 501, 502, 503, 504, 505, 506, 507, 508, 509, 601, 602, 603, 605, 609, 661, 701, 702, 703, 705, 708, 709, 801, 802, 803, 805, 901, 902, 903, 905, 906, 983 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Contains i*10^d + j for i>=1, j mod 10 > 0, j < 10^d/(20*i+1). - Robert Israel, Jun 05 2015

LINKS

Reiner Moewald, Table of n, a(n) for n = 1..15212

EXAMPLE

digit_product(661^2) = digit_product(436921) = 1296 = 36^2 = (digit_product(661))^2.

MAPLE

pdigs:= n -> convert(convert(n, base, 10), `*`):

select(t -> pdigs(t^2)=pdigs(t)^2, [seq(seq(10*k+j, j=1..9), k=0..1000)]); # Robert Israel, Jun 05 2015

MATHEMATICA

pod[n_] := Times@@ IntegerDigits@ n; Select[ Range[10^4], Mod[#, 10] > 0 && pod[#]^2 == pod[#^2] &] (* Giovanni Resta, Jun 23 2015 *)

PROG

(Python)

def product_digits(n):

...results = 1

...while n > 0:

......remainder = n % 10

......results *= remainder

......n = (n-remainder)/10

...return results

pos = 0

for a in range(1, 1000000):

...if product_digits(a*a) == (product_digits(a))*(product_digits(a)) and (a%10 > 0):

......pos += 1

......print(pos, a)

(MAGMA) [t: j in [1..9], k in [0..100] | &*Intseq(t^2) eq &*Intseq(t)^2 where t is 10*k+j]; // Bruno Berselli, Jun 23 2015

CROSSREFS

Cf. A007954, A256115.

Sequence in context: A212556 A171460 A249409 * A062657 A041589 A039768

Adjacent sequences:  A256111 A256112 A256113 * A256115 A256116 A256117

KEYWORD

nonn,base

AUTHOR

Reiner Moewald, Mar 15 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 20:52 EST 2021. Contains 341953 sequences. (Running on oeis4.)