A256099: A Geometrical Problem of Omar Khayyám and its Cubic

Wolfdieter L a $\mathrm{ng}{ }^{1}$

In Alten et al. [1], pp. 190-192, a geometrical problem of Omar Khayyám (called there Umar Hayyām) is presented [2]. See also [5, 3]. The problem is to find the point P on a circle (Radius R) in the first quadrant such that the ratio of the normal $\overline{P, H}=x$ and the radius R equals the ration of the segments $\overline{H, Q}=R-h$ and $\overline{H, O}=h$, i.e., (see Figure 1)

$$
\frac{x}{R}=\frac{R-h}{h}, \quad \text { or } \hat{x}=\frac{1}{\hat{h}}-1, \text { with } \hat{x}=\frac{x}{R} \text { and } \hat{h}=\frac{h}{R}
$$

Figure 1: A geometrical problem of Omar Khayyám involving a cubic for the ratio $\tilde{x}=\frac{x}{h}$.
This leads to a cubic equation in the following way: replace $R^{2}=x^{2}+h^{2}$ in the squared equation $h R=$ $R^{2}-h x$. That is, $\left(x^{2}+h^{2}\right) h^{2}=\left(x^{2}+h^{2}-h x\right)^{2}$ which yields $0=x\left(x^{3}-2 h x^{2}+2 h^{2} x-2 h^{3}\right)$. (With h replaced by μ the cubic factor is the one given as first equation on p. 192 of [1]).

[^0]With $\tilde{x}:=\frac{x}{h}=\frac{\hat{x}}{\hat{h}}=\tan \alpha$ this cubic becomes $(x \neq 0$ for the solution of the problem $)$

$$
\tilde{x}^{3}-2 \tilde{x}^{2}+2 \tilde{x}-2=0
$$

The discriminant of this cubic is $D=q^{2}+p^{3}$ with $q=\frac{37}{27}$ and $p=\frac{2}{9}$. Because $D=\frac{17}{9}>0$ this cubic has one real solution and two complex conjugated solutions.
The real solution is (thanks to Maple [4])

$$
\tilde{x}=\tan \alpha=\frac{1}{3}\left((3 \sqrt{33}+17)^{1 / 3}-(3 \sqrt{33}-17)^{1 / 3}+2\right)
$$

The decimal expansion of the ratio \tilde{x} is given in A256099: $\tilde{x}=1.54368901 \ldots$. This corresponds to the angle $\alpha=\arctan (\tilde{x}) \frac{180}{\pi} \approx 57.065^{\circ}$.
Because $\hat{h}=\cos \alpha$ and $\hat{x}=\sin \alpha$ the original ratio equation can also be written $\sin \alpha=\frac{1}{\cos \alpha}-1$, or

$$
\sqrt{\sin (2 \alpha)}=2 \sin \left(\frac{\alpha}{2}\right)
$$

This checks with $\alpha=\arctan \tilde{x} \approx 0.99597$. The two complex solutions are z and \bar{z} (thanks to Maple [4])

$$
\begin{aligned}
z & =a+i b, \text { with } \\
a & =-\frac{1}{6}\left((17+3 \sqrt{33})^{1 / 3}-(-17+3 \sqrt{33})^{1 / 3}+4\right) \\
b & =\frac{1}{6} \sqrt{3}\left((17+3 \sqrt{33})^{1 / 3}+(-17+3 \sqrt{33})^{1 / 3}\right)
\end{aligned}
$$

According to [1] Omar Khayyám used for this problem a rectangular triangle $\triangle(O, P, S)$ such that $\overline{O, P}+\overline{P, H}=\overline{O S}$ i.e., $R+x=R+\overline{Q, S}$, hence $\overline{Q, S}=x$ (see Figure 1). From a well-known theorem one has $h(R-h+x)=x^{2}$ or $\frac{R}{h}=\tilde{x}^{2}-\tilde{x}+1$. Squaring, with $\left(\frac{R}{h}\right)^{2}=\tilde{x}^{2}+1$, leads again to $0=\tilde{x}\left(\tilde{x}^{3}-2 \tilde{x}^{2}+2 \tilde{x}-2\right)$; hence for this problem the above found cubic for $\tilde{x}=\tan \alpha$ is recovered.

Omar Khayyám used for $\hat{h}=\frac{h}{R}=10$ and obtained the cubic for $\hat{x}=\frac{x}{R}$, namely $\hat{x}-20 \hat{x}+200 \hat{x}-$ $2000=0$.
To solve this equation Omar Khayyám used a geometric method intersecting a circle with a right angular hyperbola. For the (general) cubic for \tilde{x} one uses the circle $\hat{y}^{2}=(\hat{x}-\hat{h})(2 \hat{h}-\hat{x})$ and the rectangular hyperbola $\hat{y}=\sqrt{2} \hat{h} \frac{\hat{x}-\hat{h}}{\hat{x}}$. The intersection leads to $\hat{x}=\hat{h}$ (not of interest here) and $\hat{x}^{2}(2 \hat{h}-\hat{x})=$ $2 \hat{h}^{2}(\hat{x}-\hat{h})$ which is the cubic from above, and after division by \hat{h}^{3} this yields the cubic for $\tilde{x}=\frac{\hat{x}}{\hat{h}}$. See Figure 2.

Figure 2: The geometric method of Omar Khayyám to solve the cubic for the ratio $\tilde{x}=\frac{x}{h}$.
With dimensionless coordinates (scaled with h) the circle is $y^{2}=(x-1)(2-x)$ and the hyperbola is $x y=\sqrt{2}(x-1)$.
The abscissa for the intersection point is $\tilde{x} \approx 1.54$.

Addendum, April 24, 2015: On the second figure in Omar Khayyám's paper

In Omar Khayyám's paper [2] there is a second figure, also shown in [1], Abb. 3.3.21 on p. 191 (no comments are given there). This figure is contained in the present Figure 3. First forget about the outer circle, the a-square with diagonal c and the new axes x^{\prime} and y^{\prime}, which are not in Khayyám's second figure. The radius R, the straight line segments $x=\overline{O, B}=\overline{H, P}, h=\overline{O, H}$ and the angle $\alpha=\angle(B, P, O)=\angle(H, O, P)$ are like in Figure 1.
Omar Khayyám shows first, based on Euclid, that the area of the two rectangles $A_{1}=A\left(P, O^{\prime}, T, L\right)$ and $A_{2}=A\left(B, O^{\prime}, Q, O\right)$ are identical. This is clear, because $(R+x)(R-h)=R x$, due to the equal ratios given in the first equation above, written as $R(R-h)=x h$. This means tat $A(H, Q, T, L)=$ $A(H, O, B, P)$. See the shaded areas in Figure 3.
Then he considers one branch of a rectangular hyperbola, called here Hy, which passes through the origin O and has asymptotic lines given by the continuation of $\overline{B, O^{\prime}}$ and $\overline{O^{\prime}, T}$. He invokes propositions of Apollonius' Conics to show that this hyperbola has to pass also through point L which is on the line segment $\overline{T A}$. Therefore, the construction of this hyperbola Hy would solve the originally posed problem on the ratios, because the ordinate of L and H is h and $\overline{H, P}=x$. He says (in the translation [2]) " carrying out this method to the end is difficult and needs a few introductions from the conic sections. We do not complete this in the geometric way in order that those who know conics can, if they wish , finish it later, [...]". This is what we want do now.
The idea is to introduce a new rectangular coordinate system, adapted to the asymptotics of the hyperbola Hy, namely the new origin O^{\prime} and the axis $\left(x^{\prime}, y^{\prime}\right)$, such that the angle $\delta=\angle\left(B, O^{\prime}, S\right)=\frac{\pi}{4}$.

Then the equation of $H y$ is $x^{\prime 2}-y^{\prime 2}=a^{2}$, and the branch with $x^{\prime}<0$ is considered. If one introduces the angle $\omega=\angle\left(O, O^{\prime}, B\right)$, which is not marked in Figure 3, then in this new system the coordinates of the old origin O are $\sqrt{R^{2}+x^{2}}\left(\cos \left(\frac{\pi}{4}-\omega\right),-\sin \left(\frac{\pi}{4}-\omega\right)\right)=\frac{1}{\sqrt{2}}(R+x,-(R-x))$. This follows from the trigonometric addition theorem, using cos and sin as function of tan, and inserting $\tan \omega=\frac{x}{R}$. Because O lies on $H y$ we find $a^{2}=2 R x$. The geometric construction of a as geometric mean is then done by the Thales circle with origin M (in the old coordinate system $\left(\frac{x}{2}, 0\right)$) and radius $R+\frac{x}{2}$. The vertical at B then intersects this circle and provides a. Thus we find the vertex S of H from $\overline{O^{\prime}, S}=a$. The coordinates of S in the $\left(x^{\prime}, y^{\prime}\right)$ system are then $(-a, 0)$ and in the old system $\left(-\left(\frac{a}{\sqrt{2}}-x\right), R-\frac{a}{\sqrt{2}}\right)$. Then it is clear that L lies on $H y$ because with the angle $\sigma=\angle\left(L, O^{\prime}, T\right)$ one has $\tan \sigma=\frac{R-h}{R+x}$ and $x_{L}^{\prime}=\cos \left(\frac{\pi}{2}-\sigma\right) \sqrt{(R+x)^{2}+(R-h)^{2}}$ and $y_{L}^{\prime}=\sin \left(\frac{\pi}{2}-\sigma\right) \sqrt{(R+x)^{2}+(R-h)^{2}}$. That is, again with the addition theorem, and \cos and \sin as functions of $\tan \sigma, L=\frac{1}{\sqrt{2}} \sqrt{(R+x)^{2}+(R-h)^{2}}(-(\cos \sigma+\sin \sigma), \cos \sigma-\sin \sigma)=$ $\frac{1}{\sqrt{2}}(-(2 R+x-h), x+h)$. This checks with $2 R x=a^{2}=x_{L}^{\prime 2}-y_{L}^{\prime 2}=2 \cos \sigma \sin \sigma\left((R+x)^{2}+\right.$ $\left.(R-h)^{2}\right)$, which becomes indeed $2 \tan \sigma(R+x)^{2}=2(R-h)(R+x)$, and this has been shown above to be $2 R x$ due to the original x and h relation.
The distance between the focus F of $H y$ and O^{\prime} is then $c=\sqrt{2} a$ which is constructed as the diagonal in the a-square shown in Figure 3.
We give some approximate values for various quantities. $\hat{x}=\frac{x}{R}=\tan \omega \approx 0.839$, corresponding to $\omega \approx$ $40.01^{\circ}, \hat{h}=\frac{h}{R} \approx 0.544, \tan \sigma=\frac{1-\hat{h}}{1+\hat{x}} \approx 0.248$, corresponding to $13.93^{\circ} . \hat{a}=\frac{a}{R}=\sqrt{2 \hat{x}} \approx 1.296$. $\hat{c}=\frac{c}{R}=\sqrt{2} \hat{a} \approx 1.832 . \widehat{x_{O}^{\prime}}=\frac{x_{O}^{\prime}}{R}=\frac{1}{\sqrt{2}}(1+\hat{x}) \approx 1.300,-\widehat{y_{O}^{\prime}}=-\frac{y_{O}^{\prime}}{R}=\frac{1}{\sqrt{2}}(1-\hat{x}) \approx 0.114$. $\widehat{x_{L}^{\prime}}=\frac{x_{L}^{\prime}}{R}=\frac{1}{\sqrt{2}}(2+\hat{x}-\hat{h}) \approx-1.623, \widehat{y_{L}^{\prime}}=\frac{y_{L}^{\prime}}{R}=\frac{1}{\sqrt{2}}(\hat{x}+\hat{h}) \approx 3.912$.

Figure 3: Omar Khayyám's second approach to his problem.

References

[1] H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014.
[2] O Khayyam, A paper of Omar Khayyam, Scripta Math. 26 (1963), 323-337.
[3] The MacTutor History of Mathematics archive, http://www-history.mcs.st-and.ac.uk/Biographies/Kha , Omer Khayyám.
[4] Maple ${ }^{T M}$, http://www.maplesoft.com, Maplesoft.
[5] Wikipedia, https://en.wikipedia.org/wiki/Omar_Khayy\�\�m , Omer Khayyám.

AMS MSC numbers: 01A30, 11D25.
Keywords: Khayyám, cubic.

Concerned with OEIS sequences A256099.

[^0]: ${ }^{1}$ wolfdieter.lang@partner.kit.edu, http://www/kit.edu/~wl/

