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A256099: A Geometrical Problem of Omar Khayyám and its Cubic

Wolfdieter L a n g 1

In Alten et al. [1], pp. 190-192, a geometrical problem of Omar Khayyám (called there Umar Hayyām)
is presented [2]. See also [5, 3]. The problem is to find the point P on a circle (Radius R) in the first
quadrant such that the ratio of the normal P,H = x and the radius R equals the ration of the segments
H,Q = R − h and H,O = h, i.e., (see Figure 1)

x

R
=

R − h

h
, or x̂ =

1

ĥ
− 1 ,with x̂ =

x

R
and ĥ =

h

R
.

Figure 1: A geometrical problem of Omar Khayyám involving a cubic for the ratio x̃ =
x

h
.

This leads to a cubic equation in the following way: replace R2 = x2 + h2 in the squared equation hR =
R2 − hx. That is, (x2 + h2)h2 = (x2 + h2 − hx)2 which yields 0 = x

(
x3 − 2hx2 + 2h2 x − 2h3

)
.

(With h replaced by µ the cubic factor is the one given as first equation on p. 192 of [1]).
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With x̃ :=
x

h
=

x̂

ĥ
= tan α this cubic becomes (x 6= 0 for the solution of the problem)

x̃3 − 2 x̃2 + 2 x̃ − 2 = 0.

The discriminant of this cubic is D = q2 + p3 with q =
37

27
and p =

2

9
. Because D =

17

9
> 0 this

cubic has one real solution and two complex conjugated solutions.

The real solution is (thanks to Maple [4])

x̃ = tan α =
1

3

(
(3

√
33 + 17)1/3 − (3

√
33 − 17)1/3 + 2

)
.

The decimal expansion of the ratio x̃ is given in A256099: x̃ = 1.54368901.... This corresponds to the

angle α = arctan(x̃)
180

π
≈ 57.065o.

Because ĥ = cos α and x̂ = sin α the original ratio equation can also be written sin α =
1

cos α
− 1, or

√
sin(2α) = 2 sin

(α

2

)
.

This checks with α = arctan x̃ ≈ 0.99597. The two complex solutions are z and z̄ (thanks to Maple [4])

z = a + i b, with

a = −1

6

(
(17 + 3

√
33 )1/3 − (−17 + 3

√
33 )1/3 + 4

)
,

b =
1

6

√
3

(
(17 + 3

√
33 )1/3 + (−17 + 3

√
33 )1/3

)
.

According to [1] Omar Khayyám used for this problem a rectangular triangle △(O,P, S) such that
O,P + P,H = OS i.e., R + x = R + Q,S, hence Q,S = x (see Figure 1). From a well-known

theorem one has h (R − h+ x) = x2 or
R

h
= x̃2 − x̃ + 1. Squaring, with

(
R

h

)
2

= x̃2 + 1, leads again

to 0 = x̃ (x̃3 − 2 x̃2 + 2 x̃ − 2); hence for this problem the above found cubic for x̃ = tan α is recovered.

Omar Khayyám used for ĥ =
h

R
= 10 and obtained the cubic for x̂ =

x

R
, namely x̂ − 20 x̂ + 200 x̂ −

2000 = 0.

To solve this equation Omar Khayyám used a geometric method intersecting a circle with a right angular
hyperbola. For the (general) cubic for x̃ one uses the circle ŷ2 = (x̂ − ĥ) (2 ĥ − x̂) and the rectangular

hyperbola ŷ =
√

2 ĥ
x̂ − ĥ

x̂
. The intersection leads to x̂ = ĥ (not of interest here) and x̂2 (2 ĥ − x̂) =

2 ĥ2 (x̂ − ĥ) which is the cubic from above, and after division by ĥ3 this yields the cubic for x̃ =
x̂

ĥ
. See

Figure 2.
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Figure 2: The geometric method of Omar Khayyám to solve the cubic for the ratio x̃ =
x

h
.

With dimensionless coordinates (scaled with h) the circle is y2 = (x − 1) (2 − x)
and the hyperbola is x y =

√
2 (x − 1).

The abscissa for the intersection point is x̃ ≈ 1.54.

Addendum, April 24, 2015: On the second figure in Omar Khayyám’s paper

In Omar Khayyám’s paper [2] there is a second figure, also shown in [1], Abb. 3.3.21 on p. 191 (no
comments are given there). This figure is contained in the present Figure 3. First forget about the
outer circle, the a−square with diagonal c and the new axes x′ and y′, which are not in Khayyám’s

second figure. The radius R, the straight line segments x = O,B = H,P , h = O,H and the angle
α = ∠(B,P,O) = ∠(H,O,P ) are like in Figure 1.

Omar Khayyám shows first, based on Euclid, that the area of the two rectangles A1 = A(P,O′, T, L)
and A2 = A(B,O′, Q,O) are identical. This is clear, because (R + x) (R − h) = R x, due to the equal
ratios given in the first equation above, written as R (R − h) = xh. This means tat A(H,Q, T,L) =
A(H,O,B,P ). See the shaded areas in Figure 3.

Then he considers one branch of a rectangular hyperbola, called here Hy, which passes through the origin
O and has asymptotic lines given by the continuation of B,O′ and O′, T . He invokes propositions of
Apollonius’ Conics to show that this hyperbola has to pass also through point L which is on the line
segment TA. Therefore, the construction of this hyperbola Hy would solve the originally posed problem
on the ratios, because the ordinate of L and H is h and H,P = x. He says (in the translation [2]) “
carrying out this method to the end is difficult and needs a few introductions from the conic sections.
We do not complete this in the geometric way in order that those who know conics can, if they wish ,
finish it later, [...]”. This is what we want do now.

The idea is to introduce a new rectangular coordinate system, adapted to the asymptotics of the hy-

perbola Hy, namely the new origin O′ and the axis (x′, y′), such that the angle δ = ∠(B,O′, S) =
π

4
.
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Then the equation of Hy is x′ 2 − y′ 2 = a2, and the branch with x′ < 0 is considered. If one introduces
the angle ω = ∠(O,O′, B), which is not marked in Figure 3, then in this new system the coordi-

nates of the old origin O are
√

R2 + x2

(
cos

(π

4
− ω

)
, − sin

(π

4
− ω

))
=

1√
2

(R + x, −(R − x)).

This follows from the trigonometric addition theorem, using cos and sin as function of tan, and in-

serting tan ω =
x

R
. Because O lies on Hy we find a2 = 2R x. The geometric construction of a

as geometric mean is then done by the Thales circle with origin M (in the old coordinate system(x

2
, 0

)
) and radius R +

x

2
. The vertical at B then intersects this circle and provides a. Thus we

find the vertex S of Hy from O′, S = a. The coordinates of S in the (x′, y′) system are then (−a, 0)

and in the old system

(
−

(
a√
2

− x

)
, R − a√

2

)
. Then it is clear that L lies on Hy because with

the angle σ = ∠(L,O′, T ) one has tan σ =
R − h

R + x
and x′

L = cos
(π

2
− σ

) √
(R + x)2 + (R − h)2

and y′L = sin
(π

2
− σ

) √
(R + x)2 + (R − h)2. That is, again with the addition theorem, and cos

and sin as functions of tan σ, L =
1√
2

√
(R + x)2 + (R − h)2 (−(cos σ + sin σ), cos σ − sin σ) =

1√
2

(−(2R + x − h), x + h). This checks with 2R x = a2 = x′ 2

L − y′ 2L = 2 cos σ sin σ ((R + x)2 +

(R−h)2), which becomes indeed 2 tan σ (R + x)2 = 2 (R − h) (R + x) , and this has been shown above
to be 2R x due to the original x and h relation.

The distance between the focus F of Hy and O′ is then c =
√

2 a which is constructed as the diagonal
in the a−square shown in Figure 3.

We give some approximate values for various quantities. x̂ =
x

R
= tan ω ≈ 0.839, corresponding to ω ≈

40.01o, ĥ =
h

R
≈ 0.544, tan σ =

1 − ĥ

1 + x̂
≈ 0.248, corresponding to 13.93o. â =

a

R
=

√
2 x̂ ≈ 1.296.

ĉ =
c

R
=

√
2 â ≈ 1.832. x̂′

O =
x′

O

R
=

1√
2

(1 + x̂) ≈ 1.300, −ŷ′O = −y′O
R

=
1√
2

(1 − x̂) ≈ 0.114.

x̂′

L =
x′

L

R
=

1√
2

(2 + x̂ − ĥ) ≈ −1.623, ŷ′L =
y′L
R

=
1√
2

(x̂ + ĥ) ≈ 3.912.
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Figure 3: Omar Khayyám’s second approach to his problem.

References

[1] H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014.

[2] O Khayyam, A paper of Omar Khayyam, Scripta Math. 26 (1963), 323-337.

[3] The MacTutor History of Mathematics archive, http://www-history.mcs.st-and.ac.uk/Biographies/Khayy
, Omer Khayyám.

[4] MapleTM , http://www.maplesoft.com , Maplesoft.

[5] Wikipedia, https://en.wikipedia.org/wiki/Omar_Khayy%C3%A1m , Omer Khayyám.

AMS MSC numbers: 01A30, 11D25.

Keywords: Khayyám, cubic.

Concerned with OEIS sequences A256099.

5

http://www-history.mcs.st-and.ac.uk/Biographies/Khayyam.html
http://www.maplesoft.com
https://en.wikipedia.org/wiki/Omar_Khayy%C3%A1m
http://oeis.org/A256099

