A256099: A Geometrical Problem of Omar Khayyám and its Cubic

Wolfdieter L a n g 1

In Alten et al. [1], pp. 190-192, a geometrical problem of Omar Khayyám (called there Umar Hayyām) is presented [2]. See also [5, 3]. The problem is to find the point P on a circle (Radius R) in the first quadrant such that the ratio of the normal $\overline{P, H} = x$ and the radius R equals the ratio of the segments $\overline{H, Q} = R - h$ and $\overline{H, O} = h$, *i.e.*, (see Figure 1)

$$\frac{x}{R} = \frac{R-h}{h}$$
, or $\hat{x} = \frac{1}{\hat{h}} - 1$, with $\hat{x} = \frac{x}{R}$ and $\hat{h} = \frac{h}{R}$.

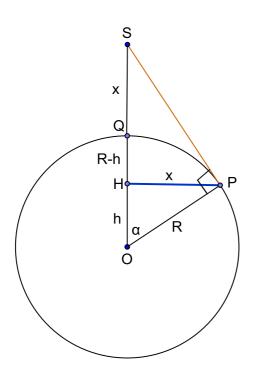


Figure 1: A geometrical problem of Omar Khayyám involving a cubic for the ratio $\tilde{x} = \frac{x}{h}$.

This leads to a cubic equation in the following way: replace $R^2 = x^2 + h^2$ in the squared equation $hR = R^2 - hx$. That is, $(x^2 + h^2)h^2 = (x^2 + h^2 - hx)^2$ which yields $0 = x(x^3 - 2hx^2 + 2h^2x - 2h^3)$. (With *h* replaced by μ the cubic factor is the one given as first equation on p. 192 of [1]).

¹ wolfdieter.lang@partner.kit.edu, http://www/kit.edu/~wl/

With $\tilde{x} := \frac{x}{h} = \frac{\hat{x}}{\hat{h}} = \tan \alpha$ this cubic becomes $(x \neq 0 \text{ for the solution of the problem})$

$$\tilde{x}^3 - 2\,\tilde{x}^2 + 2\,\tilde{x} - 2 = 0$$

The discriminant of this cubic is $D = q^2 + p^3$ with $q = \frac{37}{27}$ and $p = \frac{2}{9}$. Because $D = \frac{17}{9} > 0$ this cubic has one real solution and two complex conjugated solutions.

The real solution is (thanks to Maple [4])

$$\tilde{x} = \tan \alpha = \frac{1}{3} \left((3\sqrt{33} + 17)^{1/3} - (3\sqrt{33} - 17)^{1/3} + 2 \right).$$

The decimal expansion of the ratio \tilde{x} is given in <u>A256099</u>: $\tilde{x} = 1.54368901...$ This corresponds to the angle $\alpha = \arctan(\tilde{x}) \frac{180}{\pi} \approx 57.065^{\circ}$.

Because $\hat{h} = \cos \alpha$ and $\hat{x} = \sin \alpha$ the original ratio equation can also be written $\sin \alpha = \frac{1}{\cos \alpha} - 1$, or

$$\sqrt{\sin(2\alpha)} = 2\sin\left(\frac{\alpha}{2}\right)$$

This checks with $\alpha = \arctan \tilde{x} \approx 0.99597$. The two complex solutions are z and \bar{z} (thanks to Maple [4])

$$z = a + ib, \text{ with}$$

$$a = -\frac{1}{6} \left((17 + 3\sqrt{33})^{1/3} - (-17 + 3\sqrt{33})^{1/3} + 4 \right),$$

$$b = \frac{1}{6} \sqrt{3} \left((17 + 3\sqrt{33})^{1/3} + (-17 + 3\sqrt{33})^{1/3} \right).$$

According to [1] Omar Khayyám used for this problem a rectangular triangle $\triangle(O, P, S)$ such that $\overline{O, P} + \overline{P, H} = \overline{OS}$ *i.e.*, $R + x = R + \overline{Q, S}$, hence $\overline{Q, S} = x$ (see Figure 1). From a well-known theorem one has $h(R - h + x) = x^2$ or $\frac{R}{h} = \tilde{x}^2 - \tilde{x} + 1$. Squaring, with $\left(\frac{R}{h}\right)^2 = \tilde{x}^2 + 1$, leads again to $0 = \tilde{x}(\tilde{x}^3 - 2\tilde{x}^2 + 2\tilde{x} - 2)$; hence for this problem the above found cubic for $\tilde{x} = \tan \alpha$ is recovered.

Omar Khayyám used for $\hat{h} = \frac{h}{R} = 10$ and obtained the cubic for $\hat{x} = \frac{x}{R}$, namely $\hat{x} - 20\hat{x} + 200\hat{x} - 2000 = 0$.

To solve this equation Omar Khayyám used a geometric method intersecting a circle with a right angular hyperbola. For the (general) cubic for \tilde{x} one uses the circle $\hat{y}^2 = (\hat{x} - \hat{h})(2\hat{h} - \hat{x})$ and the rectangular hyperbola $\hat{y} = \sqrt{2}\hat{h}\frac{\hat{x}-\hat{h}}{\hat{x}}$. The intersection leads to $\hat{x} = \hat{h}$ (not of interest here) and $\hat{x}^2(2\hat{h} - \hat{x}) = 2\hat{h}^2(\hat{x} - \hat{h})$ which is the cubic from above, and after division by \hat{h}^3 this yields the cubic for $\tilde{x} = \frac{\hat{x}}{\hat{h}}$. See Figure 2.

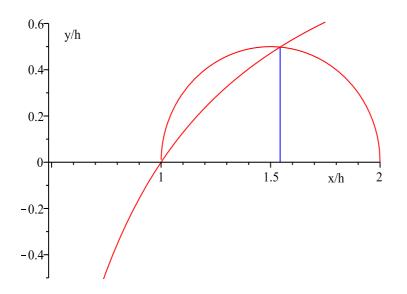


Figure 2: The geometric method of Omar Khayyám to solve the cubic for the ratio $\tilde{x} = \frac{x}{h}$. With dimensionless coordinates (scaled with h) the circle is $y^2 = (x - 1)(2 - x)$ and the hyperbola is $xy = \sqrt{2}(x - 1)$. The abscissa for the intersection point is $\tilde{x} \approx 1.54$.

Addendum, April 24, 2015: On the second figure in Omar Khayyám's paper

In Omar Khayyám's paper [2] there is a second figure, also shown in [1], Abb. 3.3.21 on p. 191 (no comments are given there). This figure is contained in the present Figure 3. First forget about the outer circle, the *a*-square with diagonal *c* and the new axes x' and y', which are not in Khayyám's second figure. The radius *R*, the straight line segments $x = \overline{O, B} = \overline{H, P}$, $h = \overline{O, H}$ and the angle $\alpha = \angle(B, P, O) = \angle(H, O, P)$ are like in Figure 1.

Omar Khayyám shows first, based on Euclid, that the area of the two rectangles $A_1 = A(P, O', T, L)$ and $A_2 = A(B, O', Q, O)$ are identical. This is clear, because (R + x)(R - h) = Rx, due to the equal ratios given in the first equation above, written as R(R - h) = xh. This means tat A(H, Q, T, L) =A(H, O, B, P). See the shaded areas in Figure 3.

Then he considers one branch of a rectangular hyperbola, called here H_y , which passes through the origin O and has asymptotic lines given by the continuation of $\overline{B,O'}$ and $\overline{O',T}$. He invokes propositions of *Apollonius' Conics* to show that this hyperbola has to pass also through point L which is on the line segment \overline{TA} . Therefore, the construction of this hyperbola H_y would solve the originally posed problem on the ratios, because the ordinate of L and H is h and $\overline{H,P} = x$. He says (in the translation [2]) " carrying out this method to the end is difficult and needs a few introductions from the *conic sections*. We do not complete this in the geometric way in order that those who know conics can, if they wish , finish it later, [...]". This is what we want do now.

The idea is to introduce a new rectangular coordinate system, adapted to the asymptotics of the hyperbola H_y , namely the new origin O' and the axis (x', y'), such that the angle $\delta = \angle (B, O', S) = \frac{\pi}{4}$.

Then the equation of Hy is $x'^2 - y'^2 = a^2$, and the branch with x' < 0 is considered. If one introduces the angle $\omega = \angle(O, O', B)$, which is not marked in Figure 3, then in this new system the coordinates of the old origin O are $\sqrt{R^2 + x^2} \left(\cos\left(\frac{\pi}{4} - \omega\right), -\sin\left(\frac{\pi}{4} - \omega\right) \right) = \frac{1}{\sqrt{2}} \left(R + x, -(R - x)\right)$. This follows from the trigonometric addition theorem, using cos and sin as function of tan, and inserting $\tan \omega = \frac{x}{R}$. Because O lies on Hy we find $a^2 = 2Rx$. The geometric construction of a as geometric mean is then done by the *Thales* circle with origin M (in the old coordinate system $\left(\frac{x}{2}, 0\right)$) and radius $R + \frac{x}{2}$. The vertical at B then intersects this circle and provides a. Thus we find the vertex S of Hy from $\overline{O', S} = a$. The coordinates of S in the (x', y') system are then (-a, 0) and in the old system $\left(-\left(\frac{a}{\sqrt{2}} - x\right), R - \frac{a}{\sqrt{2}}\right)$. Then it is clear that L lies on Hy because with the angle $\sigma = \angle(L, O', T)$ one has $\tan \sigma = \frac{R-h}{R+x}$ and $x'_L = \cos\left(\frac{\pi}{2} - \sigma\right)\sqrt{(R+x)^2 + (R-h)^2}$ and $y'_L = \sin\left(\frac{\pi}{2} - \sigma\right)\sqrt{(R+x)^2 + (R-h)^2}$. That is, again with the addition theorem, and cos and sin as functions of $\tan \sigma$, $L = \frac{1}{\sqrt{2}}\sqrt{(R+x)^2 + (R-h)^2}$ ($-(\cos \sigma + \sin \sigma), \cos \sigma - \sin \sigma$) = $\frac{1}{\sqrt{2}}$ (-(2R + x - h), x + h). This checks with $2Rx = a^2 = x'_L^2 - y'_L^2 = 2\cos \sigma \sin \sigma ((R+x)^2 + (R-h)^2)$, which becomes indeed 2 tan $\sigma(R+x)^2 = 2(R-h)(R+x)$, and this has been shown above to be 2Rx due to the original x and h relation. The distance between the focus F of Hy and O' is then $c = \sqrt{2}a$ which is constructed as the diagonal in the a-square shown in Figure 3.

We give some approximate values for various quantities. $\hat{x} = \frac{x}{R} = \tan \omega \approx 0.839$, corresponding to $\omega \approx 40.01^{\circ}$, $\hat{h} = \frac{h}{R} \approx 0.544$, $\tan \sigma = \frac{1 - \hat{h}}{1 + \hat{x}} \approx 0.248$, corresponding to 13.93° . $\hat{a} = \frac{a}{R} = \sqrt{2}\hat{x} \approx 1.296$. $\hat{c} = \frac{c}{R} = \sqrt{2}\hat{a} \approx 1.832$. $\hat{x'_O} = \frac{x'_O}{R} = \frac{1}{\sqrt{2}}(1 + \hat{x}) \approx 1.300$, $-\hat{y'_O} = -\frac{y'_O}{R} = \frac{1}{\sqrt{2}}(1 - \hat{x}) \approx 0.114$. $\hat{x'_L} = \frac{x'_L}{R} = \frac{1}{\sqrt{2}}(2 + \hat{x} - \hat{h}) \approx -1.623$, $\hat{y'_L} = \frac{y'_L}{R} = \frac{1}{\sqrt{2}}(\hat{x} + \hat{h}) \approx 3.912$.

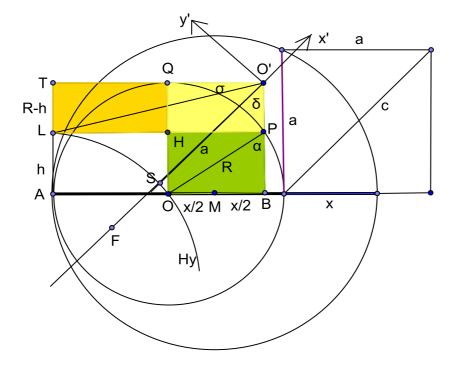


Figure 3: Omar Khayyám's second approach to his problem.

References

- [1] H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014.
- [2] O Khayyam, A paper of Omar Khayyam, Scripta Math. 26 (1963), 323-337.
- [3] The MacTutor History of Mathematics archive, http://www-history.mcs.st-and.ac.uk/Biographies/Kha, Omer Khayyám.
- [4] $Maple^{TM}$, http://www.maplesoft.com, Maplesoft.
- [5] Wikipedia, https://en.wikipedia.org/wiki/Omar_Khayy%C3%A1m , Omer Khayyám.

AMS MSC numbers: 01A30, 11D25. Keywords: Khayyám, cubic.

Concerned with OEIS sequences $\underline{A256099}$.