login
A256082
Non-palindromic balanced numbers in base 2.
12
70, 78, 150, 266, 282, 294, 310, 334, 350, 355, 371, 397, 413, 540, 554, 582, 630, 686, 723, 798, 813, 1036, 1042, 1068, 1074, 1098, 1116, 1130, 1148, 1158, 1178, 1190, 1210, 1221, 1238, 1253, 1270, 1302, 1305, 1334, 1337, 1347, 1358, 1379, 1390, 1427, 1438, 1459, 1470, 1483, 1515, 1550, 1557, 1582, 1589, 1613, 1630
OFFSET
1,1
COMMENTS
Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero.
This is the binary variant of the base-10 version A256075 invented by Eric Angelini. See A256081 for the primes in this sequence. See A256083 - A256089 and A256080 for variants in other bases.
If n is in the sequence with 2^d < n < 2^(d+1), then 2^(d+2)+2*n+1 is in the sequence, as are n*(2^k+1) for k > d. - Robert Israel, May 29 2018
LINKS
EXAMPLE
a(1) = 70 = 1000110[2] is balanced because 1*3 = 1*1 + 1*2.
MAPLE
filter:= proc(n) local L, m;
L:= convert(n, base, 2);
m:= (1+nops(L))/2;
add(L[i]*(i-m), i=1..nops(L))=0 and L <> ListTools:-Reverse(L)
end proc:
select(filter, [$2..10000]); # Robert Israel, May 29 2018
PROG
(PARI) is(n, b=2, d=digits(n, b), o=(#d+1)/2)=!(vector(#d, i, i-o)*d~)&&d!=Vecrev(d)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Mar 14 2015
STATUS
approved