This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256060 Queen Dido's puzzle (the founding of Carthage): a(n) is twice the maximal area of a polygon with 1) vertices on integral Cartesian coordinates, 2) no two edges parallel, and 3) all edge lengths less than or equal to n^2. 0
 0, 0, 1, 1, 2, 36, 36, 36, 50, 53, 153, 153, 153, 333, 333, 333, 360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The sequence may increase when n is the sum of two squares (A001481). An optimal polygon will always be convex. - Gordon Hamilton For parity reasons, the edges of the maximal-area polygon are not always as long as possible. This is true for a(9) through a(12). - Gordon Hamilton This puzzle sequence could be used when introducing students to slopes. Are these values known to be optimal or are they conjectures? - N. J. A. Sloane, Mar 13 2015 These values have not been proved to be optimal. LINKS EXAMPLE a(4) = 2 because this triangle has area 1 (remember a(n) is twice the area):                           . . . . .                           . x . x .                           . . x . .                           . . . . . a(5) = a(6) = a(7) = 36 because of this polygon of area 18:                       . . . . . . . .                       . . x . x . . .                       . . . . . x . .                       . x . . . . . .                       . . . . . . x .                       . x . . . x . .                       . . . x . . . .                       . . . . . . . . a(8) = 50 because of this polygon of area 25:                      . . . . . . . . .                      . . . . . . . . .                      . . . x . x . . .                      . x . . . . . . .                      . . . . . . . x .                      . x . . . . . . .                      . . . . . . x . .                      . . x . . . . . .                      . . . . x . . . .                      . . . . . . . . . a(9) = 53 because of this polygon of area 26.5:                      . . . . . . . . .                      . . . x . . . . .                      . x . . . x . . .                      . . . . . . . . .                      . . . . . . . x .                      . x . . . . . . .                      . . . . . . x . .                      . . x . . x . . .                      . . . . . . . . . a(10) = 153 because of this polygon of area 76.5:                   . . . . . . . . . . . . .                   . . . x . . x . . . . . .                   . . x . . . . . x . . . .                   . . . . . . . . . . . . .                   . x . . . . . . . . x . .                   . . . . . . . . . . . . .                   . . . . . . . . . . . x .                   . x . . . . . . . . . . .                   . . . . . . . . . . . . .                   . . . . . . . . . . x . .                   . . x . . . . . x . . . .                   . . . . . x . . . . . . .                   . . . . . . . . . . . . . CROSSREFS Sequence in context: A094725 A095397 A073406 * A096513 A037418 A239343 Adjacent sequences:  A256057 A256058 A256059 * A256061 A256062 A256063 KEYWORD nonn,more AUTHOR Gordon Hamilton, Mar 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 18:14 EDT 2019. Contains 327981 sequences. (Running on oeis4.)