login
A256029
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum 0 or 1 and no antidiagonal sum 0 or 1 and no row sum 1 and no column sum 1
9
33, 68, 68, 154, 164, 154, 352, 484, 484, 352, 798, 1302, 1689, 1302, 798, 1804, 3500, 5559, 5559, 3500, 1804, 4086, 9820, 18881, 23134, 18881, 9820, 4086, 9304, 27424, 65202, 96363, 96363, 65202, 27424, 9304, 21194, 76068, 223901, 408233, 494704
OFFSET
1,1
COMMENTS
Table starts
....33.....68.....154.......352........798........1804.........4086
....68....164.....484......1302.......3500........9820........27424
...154....484....1689......5559......18881.......65202.......223901
...352...1302....5559.....23134......96363......408233......1736085
...798...3500...18881.....96363.....494704.....2608924.....13744343
..1804...9820...65202....408233....2608924....17064206....111505109
..4086..27424..223901...1736085...13744343...111505109....904174706
..9304..76068..772322...7397708...72433360...730298893...7347151637
.21194.212126.2674536..31551114..383085494..4797270283..59890010020
.48176.592302.9246717.134520680.2025211622.31486421742.487874115891
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) -2*a(n-6) -4*a(n-7) +2*a(n-9) for n>10
k=2: [order 12]
k=3: [order 26] for n>28
k=4: [order 40] for n>42
k=5: [order 77] for n>79
EXAMPLE
Some solutions for n=4 k=4
..1..0..1..1..1..0....0..1..1..1..0..1....0..1..1..1..1..0....0..1..1..1..1..1
..1..1..1..1..1..1....1..1..1..1..1..0....1..1..1..1..1..1....1..1..1..1..0..1
..1..1..1..1..1..1....1..1..1..1..1..1....1..0..1..1..1..1....1..0..1..1..1..1
..1..1..0..1..1..1....1..1..0..1..1..1....1..1..1..1..1..0....1..1..1..1..1..1
..0..1..1..1..1..0....1..1..1..1..1..0....0..1..1..1..1..1....0..1..1..1..1..1
..1..1..1..1..1..1....1..1..1..1..1..1....1..1..0..1..1..1....1..1..0..1..1..0
CROSSREFS
Sequence in context: A225511 A248038 A032661 * A055078 A256022 A044135
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 13 2015
STATUS
approved