

A256015


Triangle read by rows: nth row contains all distinct primes which are representable as the sum of some subset of the set of first n primes.


3



2, 2, 3, 5, 2, 3, 5, 7, 2, 3, 5, 7, 17, 2, 3, 5, 7, 11, 13, 17, 19, 23, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A066028(n) = T(n,A108018(n)).


LINKS

Reinhard Zumkeller, Rows n = 1..25 of triangle, flattened


EXAMPLE

. 1: 2 
. 2: 2 3  5
. 3: 2 3 5  7
. 4: 2 3 5 7  17
. 5: 2 3 5 7 11  13 17 19 23
. 6: 2 3 5 7 11 13  17 19 23 29 31 41
. 7: 2 3 5 7 11 13 17  19 23 29 31 37 41 43 47 53
. 8: 2 3 5 7 11 13 17 19  23 29 31 37 41 43 47 53 59 61 67 .


PROG

(Haskell)
import Data.List (subsequences, nub, sort)
a256015 n k = a256015_tabf !! (n1) !! (k1)
a256015_row n = a256015_tabf !! (n1)
a256015_tabf = map (sort . filter ((== 1) . a010051') . nub .
map sum . tail . subsequences) (tail $ inits a000040_list)


CROSSREFS

Cf. A010051, A000040, A108018 (row lengths), A066028 (right edge).
Sequence in context: A140183 A280408 A130725 * A138117 A175908 A152430
Adjacent sequences: A256012 A256013 A256014 * A256016 A256017 A256018


KEYWORD

nonn,tabf


AUTHOR

Reinhard Zumkeller, Jun 01 2015


STATUS

approved



