login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of q^3 * f( -q, -q^8)^4 * f( -q^2, -q^7) / (f( -q) * f( -q^4, -q^5)^2) in powers of q where f() is Ramanujan's general theta function.
1

%I #13 Sep 08 2022 08:46:11

%S 1,-3,3,0,0,-3,1,3,0,-2,-3,3,3,-3,0,0,0,0,2,-3,3,-3,3,-3,1,0,0,3,-3,0,

%T 0,0,3,-2,0,0,-1,-3,3,3,0,-6,3,3,0,-2,-3,6,0,-6,0,0,3,0,2,-3,3,0,0,-3,

%U 2,0,0,-3,-3,0,3,6,0,-3,0,0,4,-6,3,-3,0,-3,1

%N Expansion of q^3 * f( -q, -q^8)^4 * f( -q^2, -q^7) / (f( -q) * f( -q^4, -q^5)^2) in powers of q where f() is Ramanujan's general theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A256004/b256004.txt">Table of n, a(n) for n = 3..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Euler transform of period 9 sequence [ -3, 0, 1, 3, 3, 1, 0, -3, -2, ...].

%e G.f. = q^3 - 3*q^4 + 3*q^5 - 3*q^8 + q^9 + 3*q^10 - 2*q^12 - 3*q^13 + ...

%t a[ n_] := If[ n < 3, 0, With[{m = n - 3}, SeriesCoefficient[ q^3 Product[ (1 - q^k)^{3, 0, -1, -3, -3, -1, 0, 3, 2}[[Mod[k, 9, 1]]], {k, m}], {q, 0, n}]]];

%o (PARI) {a(n) = if( n<3, 0, n-=3; polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[2, 3, 0, -1, -3, -3, -1, 0, 3][k%9 + 1]), n))};

%o (Magma) Basis( ModularForms( Gamma1(9), 1), 82) [4];

%K sign

%O 3,2

%A _Michael Somos_, May 06 2015