login
A255979
a(n) = smallest nonnegative integer solution z to the system of congruences: z == 0 (mod n), z == 1 (mod A038610(n)) if n is in A033948; or z == 0 (mod n), z == -1 (mod A038610(n)) if n is in A033949.
1
0, 0, 1, 1, 5, 1, 43, 13, 249, 19, 2291, 32, 6397, 1379, 3737, 36599, 423953, 4727, 2579419, 436486, 1935539, 1262563, 30364247, 1549256, 1028011945, 94055426, 2754232963, 230491358, 77544004469, 7188548, 1277242663471, 4089553744057, 235736847903
OFFSET
1,5
LINKS
Umberto Cerruti, Il Teorema Cinese dei Resti (in Italian), 2015. The sequence is on page 26.
MATHEMATICA
v[n_] := Module[{s}, s = Select[Range[n], CoprimeQ[n, #] == True &]; LCM @@ s]; g1[n_] := If[n == 1, 0, If[IntegerQ[PrimitiveRoot[n]], PowerMod[n, -1, v[n]], PowerMod[-n, -1, v[n]]]]; Table[g1[k], {k, 1, 40}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Mar 12 2015 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)
STATUS
approved