login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Langton's ant walk: number of black cells on the infinite grid after the ant moves n times.
21

%I #38 Mar 11 2021 03:06:11

%S 0,1,2,3,4,3,4,5,6,7,6,7,8,9,10,9,8,7,6,7,6,7,8,9,10,9,10,11,12,13,12,

%T 11,10,9,10,9,10,11,12,13,12,13,14,15,16,15,14,13,12,13,12,11,12,13,

%U 12,13,14,15,16,15,14,13,12,13,12,13,14,15,16,15,16,17

%N Langton's ant walk: number of black cells on the infinite grid after the ant moves n times.

%C The ant starts from a completely white grid.

%C From _Albert Lau_, Jun 19 2016: (Start)

%C After n steps, the direction in which the ant is facing is 90 degree * a(n). For each 360 degrees, the ant makes a full turn.

%C The ant's position after n steps is Sum_{k=1..n} e^(a(n)*i*Pi/2) when expressed as a complex number. (End)

%D D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 63.

%H Alois P. Heinz, <a href="/A255938/b255938.txt">Table of n, a(n) for n = 0..20000</a>

%H A. Gajardo, A. Moreira, and E. Goles, <a href="https://doi.org/10.1016/S0166-218X(00)00334-6">Complexity of Langton's ant</a>, Discrete Applied Mathematics, 117 (2002), 41-50.

%H Chris G. Langton, <a href="https://doi.org/10.1016/0167-2789(86)90237-X">Studying artificial life with cellular automata</a>, Physica D: Nonlinear Phenomena, 22 (1-3) (1986), 120-149.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Langton&#39;s_ant">Langton's ant</a>.

%F a(n+104) = a(n) + 12 for n > 9976. - _Andrey Zabolotskiy_, Jul 05 2016

%t size = 10;

%t grid = SparseArray[{}, {size, size}, 1];

%t {X, Y, n} = {size, size, 0}/2 // Round;

%t While[1 <= X <= size && 1 <= Y <= size,

%t n += grid[[X, Y]] // Sow;

%t grid[[X, Y]] *= -1;

%t {X, Y} += {Cos[\[Pi]/2 n], Sin[\[Pi]/2 n]};

%t ] // Reap // Last // Last // Prepend[#, 0] &

%t (* _Albert Lau_, Jun 19 2016 *)

%Y Cf. A126978.

%K nonn,easy

%O 0,3

%A _Arkadiusz Wesolowski_, Mar 11 2015