Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 May 01 2022 13:46:10
%S 1,1,2,4,8,16,28,56,108,204,332,664,1114,2228,4078,7018,11402,22804,
%T 40638,81276,140490,230328,391544,783088,1287034,2273676,3903626,
%U 6837760,10368184,20736368,34081198,68162396
%N Number of distinct products of distinct factorials up to n!.
%H Paul Erdős and Ron L. Graham, <a href="http://www.renyi.hu/~p_erdos/1976-25.pdf">On products of factorials</a>, Bull. Inst. Math. Acad. Sinica 4:2 (1976), pp. 337-355.
%F Erdős and Graham prove that log a(n) ~ n log log n/log n.
%F a(p) = 2*a(p-1) for prime p. - _Jon E. Schoenfield_, Apr 01 2015
%e a(3) = |{1!, 2!, 3!, 2!*3!}| = |{1, 2, 6, 12}| = 4.
%p s:= proc(n) option remember; (f-> `if`(n=0, {f},
%p map(x-> [x, x*f][], s(n-1))))(n!)
%p end:
%p a:= n-> nops(s(n)):
%p seq(a(n), n=0..20); # _Alois P. Heinz_, Mar 16 2015
%t a[n_] := a[n] = If[n == 0, 1, If[PrimeQ[n], 2 a[n-1], Times @@@ ((Subsets[Range[n]] // Rest) /. k_Integer -> k!) // Union // Length]];
%t Table[Print[n, " ", a[n]]; a[n], {n, 0, 23}] (* _Jean-François Alcover_, May 01 2022 *)
%o (PARI) a(n)=my(v=[1],N=n!); for(k=2,n-1, v=Set(concat(v,v*k!))); #v + sum(i=1,#v, !setsearch(v,N*v[i]))
%Y Cf. A058295, A000142, A001013, A060957.
%K nonn,more
%O 0,3
%A _Charles R Greathouse IV_, Mar 11 2015
%E More terms from _Alois P. Heinz_, Mar 16 2015
%E a(31) (=2*a(30)) from _Jon E. Schoenfield_, Apr 01 2015