This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255937 Number of distinct products of distinct factorials up to n!. 1
 1, 1, 2, 4, 8, 16, 28, 56, 108, 204, 332, 664, 1114, 2228, 4078, 7018, 11402, 22804, 40638, 81276, 140490, 230328, 391544, 783088, 1287034, 2273676, 3903626, 6837760, 10368184, 20736368, 34081198, 68162396 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Paul Erdős and Ron L. Graham, On products of factorials, Bull. Inst. Math. Acad. Sinica 4:2 (1976), pp. 337-355. FORMULA Erdős and Graham prove that log a(n) ~ n log log n/log n. a(p) = 2*a(p-1) for prime p. - Jon E. Schoenfield, Apr 01 2015 EXAMPLE a(3) = |{1!, 2!, 3!, 2!*3!}| = |{1, 2, 6, 12}| = 4. MAPLE s:= proc(n) option remember; (f-> `if`(n=0, {f},       map(x-> [x, x*f][], s(n-1))))(n!)     end: a:= n-> nops(s(n)): seq(a(n), n=0..20);  # Alois P. Heinz, Mar 16 2015 PROG (PARI) a(n)=my(v=[1], N=n!); for(k=2, n-1, v=Set(concat(v, v*k!))); #v + sum(i=1, #v, !setsearch(v, N*v[i])) CROSSREFS Cf. A058295, A000142, A001013, A060957. Sequence in context: A208531 A054189 A127195 * A177269 A018726 A049884 Adjacent sequences:  A255934 A255935 A255936 * A255938 A255939 A255940 KEYWORD nonn,more AUTHOR Charles R Greathouse IV, Mar 11 2015 EXTENSIONS More terms from Alois P. Heinz, Mar 16 2015 a(31) (=2*a(30)) from Jon E. Schoenfield, Apr 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 26 09:52 EDT 2019. Contains 322472 sequences. (Running on oeis4.)