login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255930 Expansion of exp( Sum_{n >= 1} A210674(n)*x^n/n ). 5
1, 3, 33, 991, 63060, 7018860, 1206748720, 295775068680, 97835325011235, 41970842737399345, 22655642596496388759, 15025240474194493147857, 12008582230377080862401692, 11382727559611560650861409564, 12625404970864692720119281536900, 16199644066580777034289339157904220 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

It appears that this sequence is integer valued.

The o.g.f. A(x) = 1 + 3*x + 33*x^2 + 991*x^3 + ... for this sequence is such that 1 + x*d/dx( log(A(x) ) is the o.g.f. for A210674.

This sequence is the particular case m = 3 of the following general conjecture.

Let m be an integer and consider the sequence u(n) defined by the recurrence u(n) = m*Sum_{k = 0..n-1} binomial(2*n,2*k) *u(k) with the initial condition u(0) = 1. Then the expansion of exp( Sum_{n >= 1} u(n)*x^n/n ) has integer coefficients.

For cases see A255926(m = -3), A255882(m = -2), A255881(m = -1), A255928 (m = 1) and A255929(m = 2).

Note that u(n), as a polynomial in the variable m, is the n-th row generating polynomial of A241171.

LINKS

Table of n, a(n) for n=0..15.

FORMULA

O.g.f.: exp(3*x + 57*x^2/2 + 2703*x^3/3 + 239277*x^4/4 + ...) = 1 + 3*x + 33*x^2 + 991*x^3 + 63060*x^4 + ....

a(0) = 1 and a(n) = 1/n*Sum_{k = 0..n-1} A210674(n-k)*a(k) for n >= 1.

MAPLE

#A255930

A210674 := proc (n) option remember; if n = 0 then 1 else 3*add(binomial(2*n, 2*k)*A210674(k), k = 0 .. n-1) end if; end proc:

A255930 := proc (n) option remember; if n = 0 then 1 else add(A210674(n-k)*A255930(k), k = 0 .. n-1)/n end if; end proc:

seq(A255930(n), n = 0 .. 15);

CROSSREFS

Cf. A210674, A241171, A255926(m = -3), A255882(m = -2), A255881(m = -1), A255928(m = 1), A255929(m = 2).

Sequence in context: A002112 A055549 A086894 * A255883 A215948 A012487

Adjacent sequences:  A255927 A255928 A255929 * A255931 A255932 A255933

KEYWORD

nonn,easy

AUTHOR

Peter Bala, Mar 11 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 18:59 EDT 2019. Contains 321382 sequences. (Running on oeis4.)