login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255929 Expansion of exp( Sum_{n >= 1} A210672(n)*x^n/n ). 5
1, 2, 15, 308, 13399, 1019106, 119698377, 20039968920, 4527610159068, 1326616296092984, 489092182592254708, 221537815033845709776, 120928125204565597029220, 78286897353506845258973144, 59305342759674536454338570652, 51970719684035315747385128783808 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

It appears that this sequence is integer valued.

The o.g.f. A(x) = 1 + 2*x + 15*x^2 + 308*x^3 + ... for this sequence is such that 1 + x*d/dx( log(A(x) ) is the o.g.f. for A210672.

This sequence is the particular case m = 2 of the following general conjecture.

Let m be an integer and consider the sequence u(n) defined by the recurrence u(n) = m*Sum_{k = 0..n-1} binomial(2*n,2*k) *u(k) with the initial condition u(0) = 1. Then the expansion of exp( Sum_{n >= 1} u(n)*x^n/n  ) has integer coefficients.

For cases see A255926(m = -3), A255882(m = -2), A255881(m = -1), A255928(m = 1) and A255930(m = 3).

Note that u(n), as a polynomial in the variable m, is the n-th row generating polynomial of A241171.

LINKS

Table of n, a(n) for n=0..15.

FORMULA

O.g.f.: exp(2*x + 26*x^2/2 + 842*x^3/3 + 50906*x^4/4 + ...) = 1 + 2*x + 15*x^2 + 308*x^3 + 13399*x^4 + ....

a(0) = 1 and a(n) = 1/n*Sum_{k = 0..n-1} A210672(n-k)*a(k) for n >= 1.

MAPLE

#A255929

A210672 := proc (n) option remember; if n = 0 then 1 else 2*add(binomial(2*n, 2*k)*A210672(k), k = 0 .. n-1) end if; end proc:

A255929 := proc (n) option remember; if n = 0 then 1 else add(A210672(n-k)*A255929(k), k = 0 .. n-1)/n end if; end proc:

seq(A255929(n), n = 0 .. 15);

CROSSREFS

A210672, A241171, A255926(m = -3), A255882(m = -2), A255881(m = -1), A255928(m = 1), A255930(m = 3).

Sequence in context: A262961 A231256 A304120 * A059167 A003025 A015200

Adjacent sequences:  A255926 A255927 A255928 * A255930 A255931 A255932

KEYWORD

nonn,easy

AUTHOR

Peter Bala, Mar 11 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 19:49 EDT 2019. Contains 322446 sequences. (Running on oeis4.)