login
A255888
Decimal expansion of log(Gamma(1/6)).
16
1, 7, 1, 6, 7, 3, 3, 4, 3, 5, 0, 7, 8, 2, 4, 0, 4, 6, 0, 5, 2, 7, 8, 4, 6, 3, 0, 9, 5, 8, 7, 9, 3, 0, 7, 5, 7, 2, 7, 9, 3, 7, 7, 4, 8, 7, 1, 0, 5, 4, 0, 5, 5, 6, 3, 8, 7, 3, 1, 5, 6, 3, 1, 4, 7, 6, 3, 6, 8, 8, 6, 2, 5, 5, 0, 4, 5, 1, 4, 1, 0, 0, 3, 7, 0, 4, 6, 1, 6, 6, 3, 2, 5, 0, 8, 2, 4, 8, 1, 5, 8, 8, 4, 1, 9
OFFSET
1,2
LINKS
FORMULA
Equals (1/2)*log(3) - (1/3)*log(2) - (1/2)*log(Pi) + 2*log(Gamma(1/3)).
EXAMPLE
1.71673343507824046052784630958793075727937748710540556...
MAPLE
evalf(log(GAMMA(1/6)), 100);
evalf((1/2)*log(3)-(1/3)*log(2)-(1/2)*log(Pi)+2*log(GAMMA(1/3)), 120);
MATHEMATICA
RealDigits[Log[Gamma[1/6]], 10, 100][[1]]
PROG
(PARI) log(gamma(1/6))
CROSSREFS
Cf. A175379 (Gamma(1/6)), A254349 (first generalized Stieltjes constant at 1/6, gamma_1(1/6)).
Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).
Sequence in context: A199279 A086309 A358187 * A060625 A145423 A019796
KEYWORD
nonn,cons
AUTHOR
STATUS
approved