login
A255868
Least m > 0 such that gcd(m^n+18, (m+1)^n+18) > 1, or 0 if there is no such m.
3
1, 0, 36, 5, 8, 193801631, 7, 16280817091929, 5, 4, 9216, 815167161742047217904392262, 7, 46, 20, 5, 19, 1837, 1, 224, 8, 7, 56, 13215457, 5, 130689, 221, 4, 5, 1167507, 7, 9708, 65, 7, 20, 63, 1, 4248, 5, 5, 5, 527010, 7
OFFSET
0,3
COMMENTS
See A118119, which is the main entry for this class of sequences.
EXAMPLE
For n=0, gcd(m^0+18, (m+1)^0+18) = gcd(19, 19) = 19, therefore a(0)=1, the smallest possible (positive) m-value.
For n=1, gcd(m^n+18, (m+1)^n+18) = gcd(m+18, m+19) = 1, therefore a(1)=0.
For n=2, gcd(36^2+18, 37^2+18) = 73 and (m, m+1) = (36, 37) is the smallest pair which yields a GCD > 1 here.
MATHEMATICA
A255868[n_] := Module[{m = 1}, While[GCD[m^n + 18, (m + 1)^n + 18] <= 1, m++]; m]; Join[{1, 0}, Table[A255868[n], {n, 2, 10}]] (* Robert Price, Oct 16 2018 *)
PROG
(PARI) a(n, c=18, L=10^7, S=1)={n!=1 && for(a=S, L, gcd(a^n+c, (a+1)^n+c)>1 && return(a))}
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
M. F. Hasler, Mar 09 2015
EXTENSIONS
a(5)-a(42) from Max Alekseyev, Aug 06 2015
STATUS
approved