login
A255857
Least k > 0 such that gcd(k^n+7,(k+1)^n+7) > 1, or 0 if there is no such k.
5
1, 0, 14, 320, 56, 675113, 224, 13, 5, 283, 33, 192, 26, 242, 5, 2, 10, 140, 5, 50, 142, 29, 18, 605962, 11, 97, 234881024, 951, 5, 3332537854, 14
OFFSET
0,3
COMMENTS
See A118119, which is the main entry for this class of sequences.
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 0..36
EXAMPLE
For n=0, gcd(k^0+7, (k+1)^0+7) = gcd(8, 8) = 8 for any k > 0, therefore a(0)=1 is the smallest possible positive value.
For n=1, gcd(k^n+7, (k+1)^n+7) = gcd(k+7, k+8) = 1, therefore a(1)=0.
For n=2, we have gcd(14^2+7, 15^2+7) = gcd(203, 232) = 29, and the pair (k,k+1)=(14,15) is the smallest which yields a gcd > 1, therefore a(2)=14.
MATHEMATICA
A255857[n_] := Module[{m = 1}, While[GCD[m^n + 7, (m + 1)^n + 7] <= 1, m++]; m]; Join[{1, 0}, Table[A255857[n], {n, 2, 25}]] (* Robert Price, Oct 15 2018 *)
PROG
(PARI) a(n, c=7, L=10^7, S=1)={n!=1&&for(a=S, L, gcd(a^n+c, (a+1)^n+c)>1&&return(a))}
(Python)
from sympy import primefactors, resultant, nthroot_mod
from sympy.abc import x
def A255857(n):
if n == 0: return 1
k = 0
for p in primefactors(resultant(x**n+7, (x+1)**n+7)):
for d in (a for a in sorted(nthroot_mod(-7, n, p, all_roots=True)) if pow(a+1, n, p)==-7%p):
k = min(d, k) if k else d
break
return int(k) # Chai Wah Wu, May 09 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 08 2015
EXTENSIONS
a(26)-a(36) from Hiroaki Yamanouchi, Mar 12 2015
STATUS
approved