The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255806 E.g.f.: exp(Sum_{k>=1} 3*x^k). 5
 1, 3, 15, 99, 801, 7623, 83079, 1017495, 13808097, 205374123, 3318673599, 57845821707, 1081091446785, 21553820597871, 456410531639799, 10225931132021247, 241609515712343361, 6002109578246918355, 156360266121378584943, 4261404847790207796147 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general, if e.g.f. = exp(Sum_{k>=1} m*x^k) = exp(m*x/(1-x)) and m>0, then a(n) ~ n! * m^(1/4) * exp(2*sqrt(m*n) - m/2) / (2 * sqrt(Pi) * n^(3/4)). LINKS G. C. Greubel, Table of n, a(n) for n = 0..435 FORMULA E.g.f.: exp(3*x/(1-x)). a(n) ~ 3^(1/4) * exp(2*sqrt(3*n) - 3/2) * n! / (2*sqrt(Pi)*n^(3/4)). a(n) = (2*n+1)*a(n-1) - (n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Nov 04 2016 MATHEMATICA nmax=20; CoefficientList[Series[Exp[Sum[3*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! CoefficientList[Series[E^(3*x/(1-x)), {x, 0, 20}], x] * Range[0, 20]! PROG (PARI) x= 'x + O('x^50); Vec(serlaplace(exp(3*x/(1-x)))) \\ G. C. Greubel, Feb 05 2017 CROSSREFS Cf. A000262, A052897. Sequence in context: A111546 A219359 A152402 * A226515 A135883 A147664 Adjacent sequences:  A255803 A255804 A255805 * A255807 A255808 A255809 KEYWORD nonn,easy AUTHOR Vaclav Kotesovec, Mar 07 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 19:52 EDT 2020. Contains 336381 sequences. (Running on oeis4.)